2. 中国科学技术大学近代力学系, 安徽 合肥 230027
2. Department of Modern Mechanic, University of Science and Technology of China, Hefei 230027, China
与在空气和岩土中不同, 水下爆炸冲击波超压峰值高, 波及范围广, 对邻近水域水工构筑物、水生生物以及工作人员等破坏严重[1]。国内外对陆上爆破震动的衰减规律及安全控制标准已有了系统的研究和总结, 而水下爆炸能量衰减和安全防护方面的研究成果尚比较欠缺, 迫切需要有效的减震防护措施降低水下爆炸的危害[2]。水下爆炸安全防护中, 水与防护层波阻抗突变是衰减水下爆炸冲击波能量的关键[3]。气体可压缩性好, 波阻抗明显小于水的波阻抗, 且经济方便, 在水下爆炸能量衰减方面有应用前途, 是一种理想的水下减震媒介。
目前国内外以气体作为防护层衰减水下爆炸能量的方法有: (1)气泡帷幕技术:气泡帷幕减震技术的基本思想是向水下通入高压气体以形成不断上升、浓密的气泡帷幕, 但其仅能较好的衰减冲击波中间频率能量, 而对低频和高频能量的衰减效果不理想, 对冲击波冲量和总能量衰减作用更为有限, 且需多台大功率空压机同时作业, 能耗高、水下布设和施工麻烦, 在深水爆破工程中, 这种矛盾尤为突出[4-6]。(2)空气隔层:为了克服气泡帷幕衰减爆炸能量不足的缺陷, 文献[3]提出利用空气隔层衰减水中爆炸冲击波的新设想, 设计了一种柔性体盛装的空气隔层实现对水中冲击波的阻隔。进一步研究表明空气隔层不仅能削弱水中冲击波峰值压力, 而且可有效衰减冲击波冲量和总能量, 但在浮力影响下存在着水下大面积防护布设困难的问题。综上所述, 已有的这些防护措施都需要专用的设备或空气盛装体, 存在着布设困难、使用效率低和衰减效果差等缺陷, 对于爆源附近的水下防护目标尚没有合适、便捷、高效的水下减震防护措施。如何充分发挥气体在爆炸安全防护中效能, 同时弥补已有防护措施布设困难、使用效率低和衰减效果差等缺陷, 已成为急需解决的问题。
国内外关于水下爆炸气泡脉动的研究主要关注其对目标的毁伤效应[7], 但借鉴气泡帷幕削能的原理, 或许可以利用爆炸产生气泡帷幕达到削能的效果[8]。我们在前期研究中发现[10]:纤维爆炸索柔性较好, 可缠绕成网状, 水下爆炸时, 能产生有规律的气泡脉动且持续时间较长, 如果能充分利用纤维爆炸索水下爆炸形成大量有规律的气泡, 则可构成爆炸气泡帷幕。针对实际情况, 我们提出了利用纤维爆炸索网栅结构水下爆炸产生的爆炸气泡帷幕对水下爆炸能量和冲击波进行削减的“以爆制爆”的防护设想, 为了验证这一防护思路的可行性, 进行了原理性实验。
2 爆炸气泡帷幕衰减水中冲击波原理爆炸冲击波水下传递效率高, 对水下结构物的破坏作用显著, 这主要是因为传播介质水的自身变形耗能少, 可压缩性小。水与防护层波阻抗突变是衰减水下爆炸冲击波能量的关键, 两种介质波阻抗的不匹配程度越高, 衰减效果越好[3], 采用一维弹性波为例说明这一问题。
假定在水中一维弹性波垂直传入介质1, 则由连续性条件、波阵面守恒定律和牛顿第三定律[9], 可推导出入射压力σI、反射压力σR、透射压力σT三者之间的关系:
$ \frac{{{\sigma }_{\rm{I}}}}{{{\rho }_{\rm{w}}}{{c}_{\rm{w}}}}-\frac{{{\sigma }_{\rm{R}}}}{{{\rho }_{\rm{w}}}{{c}_{\rm{w}}}}=~\frac{{{\sigma }_{\rm{T}}}}{{{\rho }_{1}}{{c}_{1}}}~ $ | (1) |
$ {{\sigma }_{~\rm{I }}}+{{\sigma }_{\rm{R}}}={{\sigma }_{\rm{T}}} $ | (2) |
式中, ρw为水的密度, kg·m-3; cw为水中波速, m·s-1; ρwcw为水波阻抗, (kg·m-3)·(m·s-1); ρ1为介质1密度, kg·m-3; c1为介质1中波速, m·s-1; ρ1c1为介质1波阻抗, (kg·m-3)·(m·s-1)。由公式(1)、(2)得:
$ {\sigma _{\rm{T}}} = T{\sigma _{I{\rm{ }}}},{\sigma _{\rm{R}}} = F{\sigma _I}{\rm{ }},T = {\rm{ }}\frac{2}{{1 + n}},F = \frac{{1 - n}}{{1 + n}},n = \frac{{{\rho _{\rm{w}}}{c_{\rm{w}}}}}{{{\rho _1}{c_1}}} $ | (3) |
式中, T、F分别是透射系数和反射系数, n是波阻抗比。
水中一维弹性波由介质1透射到水中的透射波σT1强度是:
$ {\sigma _{{\rm{T}}1}} = {T_1}{\sigma _{\rm{T}}} = \frac{2}{{1 + \frac{1}{{n}}}} \times \frac{2}{{1 + n}}{\sigma _{{\rm{I }} = {\rm{ }}}}\frac{4}{{2 + n + \frac{1}{n}}}{\sigma _{{\rm{I}}}} $ | (4) |
可见, 透射压力只与两介质波阻抗比值有关, 当两介质的波阻抗不匹配程度越高, 衰减效果越好。上述分析以弹性波简化为例, 而波在两介质交界面透反射规律对应力波(如冲击波等)是成立的。
纤维爆炸索网栅结构水下爆炸后形成的气泡帷幕为气液两相介质, 当气泡脉动达到最大半径时, 爆炸气泡帷幕的波阻抗最小, 与水的波阻抗不匹配程度最高, 衰减效果最明显。
3 爆炸气泡帷幕衰减水中爆炸冲击波特性实验 3.1 水下爆炸实验装置和测试系统水下爆炸实验在壁厚30 mm, 高5 m, 直径5 m的水下爆炸实验塔中进行。测试系统采用美国PCB公司生产的W138A25长型电气石水下激波压力传感器(ICP), 482A22型恒流源和泰克DPO7054型示波器, 实验装置和测试系统如图 1所示。
为了探索爆炸气泡帷幕的形成过程, 采用高速摄像拍摄两根纤维爆炸索水下爆炸气泡脉动过程的图像(图 2), 高速摄像拍摄频率为2000幅·ps-1, 实验中所用纤维爆炸索直径1.8 mm, 线装药密度1.8 g·m-1, 纤维爆炸索长度为1.2 m, 设置两根导爆索之间的水平距离为10 cm, 62 ms时两气泡开始相互融合, 79.5 ms时完全融合为一图形近似规则的气泡帷幕, 持续时间很长, 323 ms时仍清晰可见。
为了验证爆炸气泡帷幕对水中爆炸冲击波的衰减效果, 设计如图 3所示爆炸气泡帷幕发生装置, 在边长1 m的正方形钢圈上布设纤维爆炸索网栅结构, 所用纤维爆炸索直径1.8 mm, 线装药密度1.8 g·m-1, 上下缠绕, 由前期测试研究发现纤维爆炸索气泡脉动最大直径约为10 cm, 栅格布设水平距离定为10 cm。
炸药装药为球形黑索今(RDX)药包, 药包装药量30 g, 起爆形式为中心起爆, 如图 4所示。
实验分两次进行。第一次实验测试实验药包的冲击波压力, 药包距离压力传感器的距离为1.5 m, 二者的入水深度均为2.7 m, 测试得到药包水下爆炸冲击波波形如图 5所示。从图 5中可以看出药包的压力峰值为10.02 MPa, 测点处压力由零上升到峰值所需要的时间为6 μs, 随后冲击波压力以指数形式衰减。
第二次实验主要测试爆炸气泡帷幕衰减冲击波的效果。同样实验条件下, 药包距离压力传感器的距离为1.5 m, 将纤维爆炸索网栅布设在药包和传感器之间, 距离药包为0.8 m, 其中心位置与药包、传感器在水下同一深度处(2.7 m), 纤维爆炸索网栅结构与药包的起爆微差时间设为30 ms, 实验测得RDX药包爆炸冲击波通过爆炸气泡帷幕后的压力曲线如图 6所示。
在爆炸气泡帷幕作用下测试药包冲击波压力峰值衰减为4.09 MPa, 爆炸气泡帷幕对冲击波峰值压力的衰减量高达60%, 且冲击波压力通过爆炸气泡帷幕后, 脉动持续时间超过未设爆炸气泡帷幕前的持续时间。
4.2 爆炸气泡帷幕对水中冲击波比冲量的衰减爆炸气泡帷幕削减水下爆炸冲击波峰值压力明显, 但是水下爆炸危害不仅与冲击波峰值有关, 还有水下爆炸能量有关。因此, 还要对爆炸气泡帷幕作用下水中爆炸能量分布情况进行研究, 以综合评判爆炸气泡帷幕的削能效果。
通过对压力时程曲线积分, 可得到测点处水下爆炸冲击波的比冲量, 比冲量是表征含能材料水下爆炸性能的重要参数。
$ I{\rm{ }} = \int_{{t_{\rm{a}}}}^{{t_{\rm{b}}}} {p(t){\rm{d}}t} $ | (5) |
式中, I是爆炸波比冲量, Pa·ms; ta为冲击波到达时间, ms; tb为冲击波的结束时间, 一般取值为ta+6.7θ, ms; θ为时间常数, 指爆炸冲击波压力时程中由峰值压力pm衰减为pm/e所用的时间, ms。
对图 5和图 6的压力时程曲线积分, 获得第一次实验未设爆炸气泡帷幕时爆炸冲击波比冲量时程曲线和第二次实验设置爆炸气泡帷幕冲击波通过后的冲量时程曲线, 如图 7所示, 爆炸气泡帷幕对冲击波比冲量的衰减高达62.2%, 能够有效削减冲击波比冲量。
为了评判爆炸气泡帷幕对水中爆炸压力能量的衰减效果, 对水中爆炸压力信号进行小波包分析。由于水下爆炸压力信号为非平稳信号, 目前非平稳信号小波包分析小波基函数一般取db8, 本研究小波包分解时选用db8小波基函数。实验测试系统采样频率为500 kHz, 由采样定理选取分析频率为250 kHz, 测试系统最小工作频率为5 Hz, 则根据小波包分析原理, 可将信号分解到16层, 最小频带为0~3.815 Hz。
小波包分解得到的各频带范围内的分量仍为压力时间变化曲线, 各层对应的能量及分析信号的总能量可通过公式(6)、(7)计算:
$ {E_i} = {\int {|{S_i}|} ^2}{\rm{d}}t = \sum\limits_{j = 1}^m {|{x_{ij}}|{^2}} $ | (6) |
$ {E_{\rm{O}}} = \sum\limits_{i = 1}^{{2^n} - 1} {|{E_i}{|^2}} $ | (7) |
式中, n为小波包分解的层数, 取16; Ei为第i频率带信号对应的能量; EO为分析信号的总能量; Si为第i频率带的小波分解信号; xij为信号Si的离散点幅值; 其中i=1, 2, …, 2n; j=1, 2, …, m, m为信号的离散采样点。
各频带能量(Ei)占总能量(EO)的比例ηi为:
$ {{\eta }_{i}}=\frac{{{E}_{i}}}{{{E}_{\rm{O}}}} $ | (8) |
对图 5和图 6压力信号进行小波包分解后, 通过公式(7)计算得到布设爆炸气泡帷幕前后分析信号的总能量, 分析发现爆炸气泡帷幕对水下爆炸冲击波能量的衰减效果高达57.7%, 能量衰减效果明显。
为了全面考察爆炸气泡帷幕对各频率冲击波信号的衰减效果, 采用公式(6)~(8)对小波包变换分层重构信号进行计算, 获得水下爆炸压力信号通过爆炸气泡帷幕前后各频带能量分布情况, 图 8、图 9所示。
水下爆炸冲击波信号频率成分丰富, 各频段内都有一定的能量, 如图 8和图 9所示。未布设爆炸气泡帷幕时(图 8), 在0~60 kHz和90~120 kHz两个频率段能量最大。布设爆炸气泡帷幕后(图 9), 0~60 kHz范围所含能量最大, 但和图 8相比, 这一频率范围内的能量值远远小于冲击波能量分布, 与冲击波能量相差很大, 60 kHz以上的各频带能量非常小。爆炸气泡帷幕对各频段的冲击波能量衰减效果明显, 绝大部分频段的能量衰减都在50%以上。爆炸气泡帷幕能够有效消除水下爆炸冲击波的高频部分, 通过爆炸气泡帷幕后冲击波特性已发生根本性改变, 只有低频成分, 且低频成分能量大大削弱。
可见本研究提出的爆炸气泡帷幕法能够有效衰减水中冲击波能量, 利用纤维爆炸索水下爆炸产生的柱状气泡构成气泡帷幕进行水下爆炸能量衰减达到以“爆”制“爆”的目的, 是具发展前景的水下爆炸安全防护方法。
5 结论在传统气泡帷幕减震技术基础上, 提出爆炸气泡帷幕削能新理念, 并对提出的爆炸气泡帷幕衰减冲击波的特性进行了研究:
(1) 对提出的爆炸气泡帷幕削能设想进行了实验研究, 发现在本研究实验条件下爆炸气泡帷幕能有效衰减冲击波峰值压力, 且衰减量高达60%;爆炸气泡帷幕能够有效削减冲击波比冲量, 对冲击波比冲量的衰减高达62.2%;
(2) 采用小波包技术对爆炸气泡帷幕的削能效果进行了评判, 发现本研究实验条件下, 在爆炸气泡帷幕作用下, 各频段的冲击波能量都有很好的衰减效果, 绝大部分频段的能量衰减都在50%以上; 爆炸气泡帷幕能够有效消除水下爆炸冲击波的高频部分, 爆炸冲击波通过爆炸气泡帷幕后只有低频成分, 且低频成分能量大大削弱。
[1] |
俞统昌, 王晓峰, 王建灵. 炸药的水下爆炸冲击波性能[J].
含能材料, 2003, 11(4): 182-186. YU Tong-chang, WANG Xiao-feng, WANG Jian-ling. Underwater shockwave performance of explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2003, 11(4): 182-186. |
[2] |
伍俊, 庄铁栓, 闫鹏, 等. 水中爆炸实验装置结构设计与防护研究[J].
振动与冲击, 2013, 32(11): 131-136. WU Jun, ZHUANG Tie-shuan, YAN Peng, et al. Structural design of a test facility for underwater explosion and its protection measure to reduce shock wave[J]. Journal of Vibration and Shock, 2013, 32(11): 131-136. DOI:10.3969/j.issn.1000-3835.2013.11.026 |
[3] |
贾虎, 沈兆武. 空气隔层对水中冲击波的衰减特性[J].
爆炸与冲击, 2012, 31(1): 61-66. JIA Hu, SHEN Zhao-wu. An investigation into attenuation of underwater shock wave by air interlayer[J]. Explosion and Shock Waves, 2012, 31(1): 61-66. DOI:10.11883/1001-1455(2012)01-0061-06 |
[4] |
张志波, 李春军, 李红勇, 等. 气泡帷幕在水下爆破减震工程中的应用[J].
爆破, 2003, 20(2): 75-76. ZHANG Zhi-bo, LI Chun-jun, LI Hong-yong, et al. Application of air bubble purdah in the damping measure in the underwater blasting[J]. Blasting, 2003, 20(2): 75-76. |
[5] |
Mitsui S, Sasaki N. Some experiments on the shock wave pressure generated by underwater explosions[J].
Journal of the Industrial Explosions Society, 1972, 33(6): 365-376. |
[6] |
张文煊, 刘美山. 大型水电站围堰及岩坎爆破拆除中的安全防护问题研究[J].
工程爆破, 2008, 14(4): 76-81. ZHANG Wen-xuan, LIU Mei-shan. Research on safety protection problems in blasting demolition of cofferdam and rock ridge of large hydropower station[J]. Engineering Blasting, 2008, 14(4): 76-81. |
[7] |
汪斌, 张光升, 高宁, 等. 高速摄影技术在水下爆炸气泡脉动研究中的应用[J].
含能材料, 2010, 18(1): 102-106. WANG Bin, ZHANG Guang-sheng, GAO Ning, et al. Application of high speed photography in bubble oscillation at underwater explosion[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2010, 18(1): 102-106. |
[8] |
张阿漫, 汪玉, 闻雪友, 等. 水下爆炸气泡动态特性研究综述[J].
船舶力学, 2009, 13(5): 828-840. ZHANG A-man, WANG Yu, WEN Xue-you, et al. Review of the dynamics of the underwater explosion bubble[J]. Journal of Ship Mechanics, 2009, 13(5): 828-840. |
[9] |
王礼立.
应力波基础[M]. 北京: 国防工业出版社, 2005: 39-60.
WANG Li-li. Foundation of stress waves[M]. Beijing: Naional Defense Industry Press, 2005: 39-60. |
[10] |
贾虎. 纤维爆炸索水下爆炸特性与应用研究[D]. 合肥: 中国科学技术大学, 2011: 52-55.
JIA Hu. Research on underwater explosion characteristics and applications of fiber detonating fuse[D]. Hefei: University of Science and Technology of China, 2011: 52-55. |
Using the underwater explosion feature of fiber detonating cord, we proposed the modern theory of explosive air bubbles curtain energy attenuation and conducted test research aimed at the imagine of explosive air bubbles curtain energy attenuation.