文章编号:1006-9941(2024)09-0911-10

封闭空间内活性毁伤元战斗部爆炸载荷特性研究

罗峰^{1,2},孔祥韶¹,周 沪^{1,2},朱子涵^{1,2},卢安格^{1,2},曹宇航^{1,2}

(1.武汉理工大学 绿色智能江海直达船舶与邮轮游艇研究中心,湖北 武汉 430063; 2.武汉理工大学 船海与能源动力工程学 院,湖北 武汉 430063)

摘 要: 为探明活性毁伤元战斗部封闭空间爆炸载荷特性,开展了活性毁伤元战斗部、惰性战斗部和裸装药的舱内爆炸对比试验, 结合高速数据采集系统和三维扫描技术,分析了不同类型战斗部的舱内爆炸压力、温度、受载结构的变形响应和活性材料的能量释 放特性,结果表明活性毁伤元战斗部大幅度提高了舱内的准静态压力、温度峰值和受载结构的残余变形,相较于惰性战斗部和裸装 药,爆炸压力、温度和结构残余变形最大提高了79.7%、93.6%和62.1%。此外,活性材料能量释放速率、能量释放量与爆轰能量之 间呈现正相关关系,其中能量释放量随着爆轰能量的增大出现收敛现象。最后基于活性毁伤元战斗部载荷特性以及金属薄板的爆 炸响应规律,发现活性材料的持续释能现象导致舱内准静态压力和结构在1ms内所受冲量大幅度增加,两者共同影响结构的残余 变形。

关键词:封闭空间爆炸;活性毁伤元;战斗部;残余变形

中图分类号: TJ55;U661.42

文献标志码:A

DOI: 10.11943/CJEM2024138

0 引言

近年来,新型战斗部兼具动能、化学能联合毁伤模式,对舰船毁伤造成的影响尚未明确。因此,探明活性毁伤元战斗部舱内爆炸载荷和毁伤特性,探究封闭空间内载荷对结构残余变形的影响因素显得尤为重要。

对于活性毁伤元战斗部而言,爆炸环境对其载荷 影响较大,总体可分为开放空间爆炸和封闭空间爆炸 两类。当爆炸环境为开放空间时,活性壳体在爆轰压 力的作用下破碎,并在飞散过程中发生反应,大幅提高 了爆炸火球的半径与持续时间,同时增强了温度辐射 面积和中远范围内的冲击波强度^[1-2]。此外,活性材料 碎片在飞散冲击结构时将发生后续反应,部分未反应 材料参与爆燃^[2],大部分学者针对该方向开展了活性 破片冲击结构时的能量释放及毁伤效应研究,例如黄

收稿日期: 2024-06-04; 修回日期: 2024-06-27 网络出版日期: 2024-09-11 作者简介: 罗峰(1999-), 男, 硕士研究生, 主要从事舰船毁伤与防 护研究。e-mail:1012717357@qq.com 通信联系人: 孔祥韶(1983-), 男, 教授, 主要从事舰船毁伤与防护

研究。e-mail:kongxs@whut.edu.cn

亨建等[3]通过试验对活性破片的穿甲能力、爆炸现象 和能量释放进行了研究;Xu等开展了三次弹道冲击试 验,分别在 PTFE/AI/W 活性材料弹丸对 2024-T3 铝合 金板材的侵彻行为[4]、损伤效应[5]和不同层数铝板的 毁伤效应[6]方面进行了研究;肖艳文[7]通过活性弹丸 冲击典型靶标密闭压力容器实验对活性破片能量释放 模型展开了研究。可以发现,基于开放空间的研究大 部分集中在活性破片上,但该方面研究无法说明在炸 药与活性材料联合作用下的封闭空间结构的破坏模式 及载荷特性,因为当爆炸环境为封闭空间时,活性毁伤 元战斗部的载荷形式发生较大改变,在空间限制下冲 击波现象和热效应显著增强,并且破片群对结构的冲 击导致后续反应显著加剧,进而提高封闭空间内的温 度和准静态压力[8]。此外,活性材料的持续释能现象 也将改变结构动态响应过程,进而对结构残余变形产 牛显著影响[9]。

综上,针对活性毁伤元战斗部的研究大多集中在 开放空间爆炸或穿甲,对于封闭空间内的爆炸载荷特 性及毁伤模式研究较少。因此为有效应对活性毁伤元 战斗部在舰船舱内爆炸这一现实问题,明确爆炸及毁 伤特性,本研究采集 TNT、活性毁伤元战斗部和惰性

引用本文:罗峰,孔祥韶,周沪,等.封闭空间内活性毁伤元战斗部爆炸载荷特性研究[J].含能材料,2024,32(9):911-920. LUO Feng, KONG Xiang-shao, ZHOU Hu, et al. Blast Load Characteristic of Reactive Damage Element Warheads in Enclosed Space[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2024,32(9):911-920.

CHINESE JOURNAL OF ENERGETIC MATERIALS

战斗部在封闭空间内爆炸时的压力、温度和靶板残余 变形数据,明确了活性毁伤元战斗部载荷特性以及结 构残余变形影响因素,以期为进一步研究提供参考。

1 活性毁伤元战斗部爆炸试验

1.1 试验条件及布置

本研究设计试验模型分别为典型封闭舱室和试验 靶板,如图1a、图1b和图1c所示。典型封闭舱室为两 端有开口的刚性爆炸桶,外表面设置加筋结构,以确保 试验过程中舱室不会发生明显变形。试验靶板模型尺 寸为700 mm×700 mm,白色点划线所包围的区域为 实际受载区域,尺寸为400 mm×400 mm,点划线外侧 为夹持区域,设有直径为18 mm的螺栓孔,靶板材料 为Q235钢,板厚为2.7 mm。 爆炸载荷源包括活性毁伤元战斗部、惰性战斗部 和裸装药,其中活性毁伤元战斗部如图1d所示,由活 性材料壳体、尼龙内衬和TNT药柱组成,壳体材料为 铝与聚四氟乙烯的混合物(Al/PTFE,m(Al):m(PTFE) =26.5:73.5),由颗粒大小为75μm的Al粉与PTFE压 制烧结而成。该材料在冲击载荷作用下将发生爆燃反 应并释放能量,能量释放量为8371.7 J·g⁻¹,约为同等 质量TNT的2倍。壳体内侧嵌套尼龙内衬,其作用为 固定TNT药柱。惰性战斗部如图1e所示,壳体材料为 钢,整体结构形式与活性毁伤元战斗部一致。裸装药 则采用TNT药柱。

试验总体布置如图 2 所示,爆炸载荷源均使用柱状 TNT 装药,以药柱轴线垂直于上下舱壁的姿态悬挂于舱室中心,距离舱室两端均为 450 mm,距离舱室上

图1 试验模型:(a)封闭舱室实物图;(b)封闭舱室模型图;(c)靶板实物图;(d)活性毁伤元战斗部;(e)惰性战斗部 Fig.1 Test models: (a) Enclosed cabin picture, (b)Enclosed cabin schematic, (c) Target plate picture, (d) Reactive damage element warhead, (e) Steel warhead

图2 舱内爆炸试验总体布置

Fig.2 General arrangement of the enclosed space blast test

下舱壁均为200 mm,试验时通过雷管触发器引爆,爆 点位于药柱上端面中心点。试验靶板通过M16 螺栓 分别固定于舱室左右两端形成封闭空间。试验采用高 速数据采集系统配合 PCB 102 压力传感器和 Nanmac C2-7-K-L 热电偶温度传感器完成舱内压力和温 度数据的采集(测点布置如图 3 所示,压力和温度分别 布置在舱壁 A 与舱壁 B 的角隅处),高速数据采集系统 的采样频率为1 MHz;PCB 102 压力传感器的量程为 34.5 MPa,分辨率为1.4×10⁻⁴ MPa;Nanmac C2-7-K-L 热电偶温度传感器的响应时间为20 ms,值得注意的 是,采集数据为测点处的平均温度,但仍能反应不同条 件下的温度变化趋势。目标靶板的残余变形通过三维 扫描仪记录。

1.2 试验工况

本次试验共开展7组工况,具体试验工况如表1 所示。

图3 传感器测点布置示意图

Fig.3 Gauging point layout of sensors

表1 工况信息表

operating	charge			shell				thickness of	
condition	mass/g	height/mm	diameter/mm	mass/g	inner diameter /mm	outer diameter /mm	height/mm	target plate/mm	
1#	28.0	36.0	25.2	-	-	-	-	2.7	
2#	28.2	35.9	25.2	89.3	33.7	49.23	39.3	2.7	
3#	34.9	31.2	30.1	-	-	-	-	2.7	
4#	35.0	31.3	30.3	88.2	33.2	49.0	39.2	2.7	
5#	42.1	37.6	30.1	-	-	-	-	2.7	
6#	41.9	37.5	30.2	88.3	33.5	49.0	39.1	2.7	
7#	41.9	37.5	30.1	89.2	34.1	39.5	37.0	2.7	

Note: Conditions 2#, 4#, and 6# are reactive warheads, and condition 7# is an steel warhead.

2 试验结果与分析

2.1 载荷特性分析

本研究选取工况 6#的爆炸瞬间和试验过程中的 舱内压力变化(图 4),可以看到部分高温高压气体外 泄,导致舱内准静态压力在 7.5 ms 左右开始下降,因 此本研究选用前 5 ms 压力数据进行分析。

图 5 和表 2 为 42 g 裸装药、惰性战斗部和活性毁伤元战斗部的载荷数据(准静态压力取自 3~5 ms压力

数据的平均值),可以发现壳体的约束以及活性材料释 能,对压力载荷的形式和幅值产生了较大的影响。首 先从图 5a中可以发现,惰性战斗部爆炸产生远小于最 大压力的首次冲击波峰值,与裸装药中出现的首次峰 值即为最大压力的现象完全不同,这是由于壳体的约 束作用导致爆轰产物扩散形式改变,进一步导致波阵 面传播路径发生变化。并且由于壳体破碎消耗了部分 爆轰能量,导致最大冲击波峰值相较于裸装药降低了 33.3%。值得注意的是,壳体破碎消耗能量这一现象 最终并未在准静态压力的数值上体现,仅降低了

7

pressure history of a reactive warhead with 42 g charge mass h.

pressure (reactive warhead)

工况6#的爆炸瞬间和压力变化曲线

a. bare charge and steel warhead

图5 42g裸装药和惰性战斗部和活性毁伤元战斗部的压力、冲量曲线对比

Fig.5 Comparison of pressure and impulse curves for bare charge, steel warhead and reactive warhead with 42 g charge mass

42g裸装药、惰性战斗部和活性毁伤元战斗部的载荷数 表 2 据

 Table 2
 Load data for bare charge, steel warhead and reac tive warhead with 42 g charge mass

	peak	difference	quasi-static	difference	
warhead type	pressure	over bare	pressure	over bare	
	/MPa	charge	/MPa	charge	
bare charge	3.48	-	0.83	-	
steel warhead	2.32	-33.3%	0.79	-4.8%	
reactive warhead	3.19	-8.4%	1.42	71.1%	

4.8%,这可能是因为壳体限制了爆轰产物的扩散路 径,导致其从战斗部端口处倾泻而出,在舱内形成更为 剧烈的湍流,最终使爆轰产物的燃烧更加充分,能量释 放显著提升。

对比工况 6#和 7#(结果见图 5b,可以发现两者在 首次冲击波峰值上差异不大,推测活性材料尚在反应 初期,能量还未对舱内压力产生影响。而在第二次冲 击波峰值上,活性毁伤元战斗部高于惰性战斗部,结合 第一次波谷时的冲量出现差异和第二次波谷处活性毁 伤元战斗部仍存在 0.5 MPa 超压(裸装药和惰性战斗 部的压力接近0)两种现象,可以推断出活性壳体在第 一次波谷出现时已经开始反应并表现出明显的冲击波 增强现象。随着活性材料的持续释能,活性毁伤元战 斗部与惰性战斗部的压力载荷差异逐渐增大,最终在 准静态压力上提高了79.7%。

对不同药量下的裸装药和活性毁伤元战斗部进 行对比,试验数据图6所示,冲击波峰值取值方式 为:裸装药取第一次冲击波峰值,活性毁伤元战斗部 取第二次冲击波峰值,这是由于壳体的限制导致活 性毁伤元战斗部的首次冲击波峰值远小于最大压 力,该数据无法正确反应爆炸威力,故采用第二次冲 击波峰值进行对比。发现在28,35,42g药量下活 性毁伤元战斗部产生的冲量首次超过裸装药的时间 分别为1.27,0.65,0.30 ms,说明活性材料能量释放 速率与药量(爆轰能量)存在正相关关系。同时,当

图 4

d. differences of quasi-static pressures and second shock wave peak pressures of reactive warheads over bare charges

图 6 不同药量下活性毁伤元战斗部和裸装药的压力、冲量数据及增量 Fig.6 Pressure and impulse data for reactive warheads and bare charges with different masses of charges and increment

药量从 28 g提高至 35 g时,准静态压力的增量从 57.1% 增长至 79.7%,说明活性材料能量释放显著 提高;但从 35 g到 42 g时,增量从 79.7%降至 71.1%(活性材料在 35 g和 42 g药量下准静态压力的增幅均为 0.59 MPa)。可以发现由于 35 g TNT药柱的长径比与其余两个药量的差异较大,导致 35 g 裸装药的第一次冲击波峰值小于 28 g 裸装药,但 35 g活性毁伤元战斗部的第二次冲击波峰值却大于 28 g药量,这正是爆轰能量激发活性材料迅速释能的表现。

此外,药量的增大导致活性材料对准静态压力的 增幅逐渐收敛的现象,说明对于本研究所采用的 Al/PTFE壳体而言,35g药量足以使其发生剧烈反应。 根据式(1)可求得35g和42g药量下活性材料的能量 释放量是相同的。值得注意的是,尽管能量释放总量 相同,但在不同爆轰能量的作用下活性壳体的能量释 放的时间分布却有较大差异,结合活性材料反应释能 原理发现活性壳体的释能过程分为壳体破碎释能和破 片冲击释能两个阶段。壳体破碎爆燃发生在炸药爆轰 阶段,爆轰产物的迅速膨胀驱动壳体破碎导致部分 Al/PTFE产生高应变率塑性变形,进而在材料内部形成热点,最终导致反应。破片冲击释能发生在爆轰结 束后,壳体破碎形成的高速活性破片群冲击结构造成 破坏的同时发生爆燃并释放能量。在35g药量下,活 性破片冲击结构释放的能量弥补了壳体破碎时释放能 量不足的现象,而图6b中出现的第三、四次冲击波峰 值大于第二次峰值的现象也说明了部分活性材料能量 释放时间较晚,此时活性破片冲击释能。因此,活性壳 体能量释放还需考虑活性破片冲击结构的能量释放 情况。

$$\Delta P = \frac{\gamma - 1}{V} \Delta E \tag{1}$$

式中, ΔP 为准静态压力,MPa;V为舱室体积, m^3 ; γ 为 气体的绝热指数; ΔE 为总能量,J。

2.2 舱内温度分析

通过热电偶温度传感器记录 42 g 药量下的试验 温度变化如图 7 所示,可以发现,相同药量下活性毁伤 元战斗部爆炸温度峰值远高于裸装药和惰性战斗部,

CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

最大提高了93.6%。当AI/PTFE到达380℃后,PTFE 将发生热解并产生四氟乙烯(TFE)和六氟丙烯(HFP) 等一系列挥发性有机物,进而与铝粉发生反应。 AI/PTFE壳体在爆轰波及结构冲击的高压作用下,一 部分材料率先发生爆燃,产生的高温环境将激活剩余 未爆燃材料,使反应扩散,最终使得整体爆燃反应加 剧,舱内温度进一步上升。

2.3 毁伤特性分析

通过试验靶板的变形情况(图8)可以发现活性毁 伤元战斗部与裸装药对结构造成的毁伤变形相似,受

载区域出现穹顶状大变形,同时伴随着明显的塑性铰, 而惰性战斗部对靶板造成了大量且密集的凹坑,并且 出现了4个破口,最大破口尺寸达到了22.4 mm。此 外,惰性战斗部爆炸作用下靶板的迎爆面出现大量的 银白色金属,事实上这是爆炸时产生的小质量破片粘 在靶板上所形成的;而在活性毁伤元战斗部爆炸作用 下,靶板迎爆面均匀分布着白色粉末,该粉末为氟化铝 (AlF₃),由铝粉与TFE反应生成,均匀附着在靶板迎爆 面上。值得注意的是,活性毁伤元战斗部未对靶板造 成明显的局部破坏,甚至在迎爆面上难以发现局部凹

Fig.7 Temperature data for each type of warheads with 42 g charge mass

图8 42g药量下不同类型战斗部对靶板的毁伤形貌图

Fig.8 Damage patterns of target plates subjected with different types of warheads with 42 g charge mass

坑,说明爆炸产生的活性破片群在爆轰作用迅速发生 反应,导致破片质量减小,并且由于Al/PTFE本身的材 料性质,导致其冲击能力显著降低,难以对结构造成有 效的毁伤。

不同类型战斗部不仅对结构的毁伤形式不同,造 成的毁伤效能也有较大的差异,下面以靶板的中心点 残余变形量作为战斗部毁伤效能评判标准进行分析, 图9所示为变形云图。由于惰性战斗部爆炸作用下靶 板出现凹坑及破口,导致靶板中心点不是最大变形处, 实际中心点残余变形为17.7 mm。从图9中可以发 现,在靶板的整体毁伤能力方面,活性毁伤元战斗部远 大于裸装药和惰性战斗部,靶板中心点残余变形分别 提高了46.7%和65.0%。

活性材料作为一种反应材料,其毁伤效能与反应

程度密切相关,从不同药量的靶板变形结果(图 10 和 图 11)中可以发现,随着药量的增大,活性材料对结构 残余变形的贡献度明显上升。以相同药量下活性毁伤 元战斗部相较于裸装药造成的中心点残余变形增量作 为指标可以发现,随着药量的增大,靶板变形增量也随 之提高,从 28 g药量下的 3.4% 到 42 g药量下的 46.7%,该现象印证了爆轰能量的大小显著影响活性 材料战斗部的毁伤效能这一观点。

2.4 靶板残余变形影响因素分析

试验发现活性毁伤元战斗部在舱内爆炸时的持续 释能现象影响了金属薄板的最终残余变形^[9],结合文 献[10-11],分析发现当金属薄板在持续面外压力冲 击下产生较大塑性变形时引起平面膜力效应,增强板 的承载能力,使变形达到一个平衡状态,即"饱和响应

图10 不同药量的裸药和活性毁伤元战斗部爆炸作用下的靶板变形云图(单位:mm)

Fig.10 Deformation contours of target plates subjected with blast ofbare chagres and reactive warheads with different charge masses (unit: mm)

图11 靶板剖面图

Fig.11 Target plate profile

状态"。达到这个状态所需的时间称为"饱和响应时间",是与金属薄板的板长 L、材料密度ρ、屈服强度σ 相关的系数,计算方法如下^[12]:

$$t_{sat} = \lambda L \sqrt{\frac{\rho}{\sigma}}$$
(2)

式中, t_{sat} 为饱和响应时间,ms, λ 为无量纲系数,取 17.0, σ 取363.7 MPa,拉伸样件如图12所示。本文涉 及的2.7 mm钢板的"饱和响应时间"为1 ms。

但对于活性毁伤元战斗部而言,其在封闭空间内 爆炸后产生的压力载荷持续时间较长,且伴随着持续 的释能现象,导致准静态压力与等效压力 p_e(计算方法 见式(3))的比值显著增大(见表3),因此金属薄板变形 到达首峰值并进入振动阶段后,由面内膜力效应形成的 变形平衡状态受到破坏,变形响应仍受到较大影响。

a. Pre-test

图 12 拉伸样件 Fig.12 Tensile samples

$$P_{E} = \frac{I_{sat}}{t_{sat}} \tag{3}$$

式中, P_t 为等效压力,MPa, I_{sat} 为"变形首峰值时间"内的冲量,MPa·ms,即前1ms冲量。

图 13 为冲量与靶板残余变形的变化趋势对比图, 见,可见随着活性毁伤元战斗部药量增大,靶板残余变 形的变化率明显大于前 1 ms冲量。其中,35 g相较于 28 g靶板残余变形提高了 45.0%,而前 1 ms冲量仅提 高了 34.6%;42 g相较于 35 g的残余变形提高了 33.3%,而前 1 ms冲量仅提高了 24.3%,这与文献 [13]中靶板承载能力随着挠度的增加而增强的结论 不符。结合图 14 中残余变形与准静态压力之间的关 系,充分说明了封闭结构在遭受活性毁伤元战斗部内 爆载荷作用时,其结构响应不只受冲量影响,还需要考 虑后续准静态压力的作用。

b. Post-test

表 3	准静态	压力」	与等效	压力	的	比1	值
-----	-----	-----	-----	----	---	----	---

 Table 3
 Ratio of quasi-static pressure to equivalent pressure

mass of charge / g	warhead type	quasi-static pressure / MPa	equivalent pressure / MPa	ratio
20	bare charge	0.63	0.49	1.29
20	reactive warhead	0.99	0.52	1.90
25	bare charge	0.74	0.58	1.28
30	reactive warhead	1.33	0.7	1.90
	bare charge	0.83	0.72	1.15
42	steel warhead	0.79	0.59	1.34
	reactive warhead	1.42	0.87	1.63

Fig. 13 Trend comparisons of the impulse and the residual deformation of the target plate

图 14 准静态压力与靶板残余变形的变化趋势对比图 **Fig.14** Trend comparison of quasi-static pressure and residual deformation trend of target plate

3 结论

本研究针对活性毁伤元战斗部舱内爆炸特性和结 构响应特性展开了研究,主要结论如下:

(1)活性材料战斗部大幅度提高了封闭空间内的 准静态压力、温度和受载结构的响应,与裸装药和惰性 战斗部相比,对结构的整体毁伤能力显著提高,但 Al/PTFE活性壳体在爆炸作用下形成的破片侵彻能力 较弱,难以造成明显的局部破坏; (2)活性壳体能量释放速率与药量呈现正相关关 系,随着药量的增大,活性毁伤元战斗部的冲量超过裸 装药的时间显著缩短;随着药量的增大,活性材料能量 释放总量出现收敛现象,能量更集中于活性壳体破碎 释能阶段,而非活性破片冲击释能阶段;

(3)对于活性毁伤元战斗部此类携带 Al/PTFE 含 能材料的毁伤元而言,其在封闭空间内爆炸后产生的 压力载荷持续时间较长同时伴随着持续且较强的释能 现象,因此结构变形到达首峰值并进入振动阶段后,由 面内膜力效应形成的变形平衡状态受到破坏,进而使 得残余变形增大。

参考文献:

- [1] 李凌峰,王辉,韩秀凤,等. AI/PTFE 与炸药组合装药的爆炸释能特性[J]. 火炸药学报, 2023, 46(1): 69-75.
 LI Ling-feng, WANG Hui, HAN Xiu-feng, et al. Explosive energy release characteristics of composite charges with AI/PTFE and explosives [J]. Chinese Journal of Explosives & Propellants, 2023, 46(1): 69-75.
 [2] 杜宁,张先锋,熊玮,等.爆炸驱动典型活性材料能量释放特性
- [2] 杜丁, 张元璋, 熊玮, 等. 爆炸並初與型酒性材料能重程成得性研究[J]. 爆炸与冲击, 2020, 40(4): 44-53.
 DU Ning, ZHANG Xian-feng, XIONG Wei, et al. Energy-release characteristics of typical reactive materials under explosive loading[J]. *Explosion and Shock Waves*, 2020, 40(4): 44-53.
 [3] 黄亨建, 黄辉, 阳世清, 等. 毁伤增强型破片探索研究[J]. 含能材
- [3] 與學建,與阵,附匹領,等. 毀伪增強型做斤保紧研究[]]. 含能材料, 2007, 15(6): 566-569.
 HUANG Heng-jian, HUANG Hui, YANG Shi-qing, et al. Preliminary research on damage enhanced fragement[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2007, 15 (6): 566-569.
- [4] XU F, ZHENG Y, YU Q, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate [J]. International Journal of Impact Engineering, 2016, 95: 125-132.
- [5] XU F, ZHENG Y, YU Q, et al. Damage effects of aluminum plate by reactive material projectile impact [J]. *International Journal of Impact Engineering*, 2017, 104: 38-44.
- [6] XU F, YU Q, ZHENG Y, et al.Damage effects of double-spaced aluminum plates by reactive material projectile impact[J]. *In-*

含能材料

920

ternational Journal of Impact Engineering, 2017, 104: 13-20.

- [7] 肖艳文.活性破片侵彻引发爆炸效应及毁伤机理研究[D].北京:北京理工大学,2016.
 XIAO Yan-wen. Research on penetration-induced blast effect and damage mechanism of reactive material fragment[D]. Beijing: Beijing Institute of Technology, 2016.
- [8] 王辉, 沈飞, 李彪彪, 等. 含金属-氟聚物包覆层装药的内爆性能 试验研究[J]. 火炸药学报, 2019, 42(6): 626-630.
 WANG Hui, SHEN Fei, LI Biao-biao, et al. Experimental study on internal explosion performance of charge with metal-fluoropolymer coating[J]. *Chinese Journal of Explosives* & *Propellants*, 2019, 42(6): 626-630.
- [9] ZHOU H, YUE X, ZHENG C, et al. Dynamic behavior of steel plates subjected to confined blast loading considering afterburning effect[J]. *International Journal of Impact Engineering*, 2024, 188: 104934.

- [10] ZHAO Y, YU T, FANG J. Large dynamic plastic deflection of a simply supported beam subjected to rectangular pressure pulse[J]. Archive of Applied Mechanics, 1994, 64: 223-232.
- [11] ZHU L, YU T.Saturated impulse for pulse-loaded elastic-plastic square plates[J]. International Journal of Solids and Structures, 1997, 34: 1709-1718.
- [12] 孔祥韶,周沪,郑成,等.基于饱和响应时间的封闭空间内爆炸 载荷等效方法研究[J].爆炸与冲击,2019,39(9):15-25.
 KONG Xiang-shao, ZHOU Hu, ZHENG Cheng, et al. An equivalent calculation method for confined-blast load based on saturated response time[J]. *Explosion and Shock Waves*, 2019, 39(9): 15-25.
- [13] 白雪玉. 船体板在脉冲载荷下的饱和冲量研究[D]. 武汉:武汉 理工大学, 2019.
 BAI Xue-yu. Saturated impulse for ship plates subjected to impulse loading[D]. Wuhan: Wuhan University of Technology, 2018.

Blast Load Characteristic of Reactive Damage Element Warheads in Enclosed Space

LUO Feng^{1,2}, KONG Xiang-shao¹, ZHOU Hu^{1,2}, ZHU Zi-han^{1,2}, LU An-ge^{1,2}, CAO Yu-hang^{1,2}

(1. Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China; 2. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China)

Abstract: In order to characterize the enclosed space blast loads of reactive damage element warheads, comparative enclosed space blast tests of reactive damage element warheads, steel warheads and bare charges were carried out. Combining the high-speed data acquisition system and three-dimensional scanning technology, the blast pressure, temperature and deformation response of the loaded structure in cabin and the energy release characteristics of the reactive materials for different types of warheads were analyzed. The results show that the reactive damage element warhead substantially increases the quasi-static pressure, the peak temperature and the residual deformation of the loaded structure in the cabin. Compared to steel warheads and bare charges, the blast pressure, temperature and structural residual deformation are improved by maxima of 79.7%, 93.6% and 62.1%. In addition, the energy release rate and energy release amount of the reactive material show a positive correlation with the detonation energy, and the energy release amount of the reactive damage element warheads and the blast response law of sheet metal, it was found that the continuous energy release phenomenon of reactive materials leads to large increases in the quasi-static pressure of the cabin and the impulse applied to the structure within 1 ms, which together affect the residual deformation of the structure.

Key words: enclosed space blast; reactive damage element; warhead; residual deformation CLC number: TJ55; U661.42 Document code: A

DOI: 10.11943/CJEM2024138

(责编:高毅)