1110

文章编号:1006-9941(2024)10-1110-08

炸药爆轰环境中铝粉非等温燃烧模型

聂建新¹,刘 正¹,阚润哲^{1,2},郭学永¹,焦清介¹,闫 石¹ (1.北京理工大学爆炸科学与安全防护全国重点实验室,北京 100081; 2.清华大学合肥公共安全研究院,安徽 合肥 230000)

摘 要:为研究铝粉在爆轰环境中的燃烧特性,基于爆轰环境中铝粉燃烧模型,综合考虑了爆轰产物气体组分和爆轰环境体系温 度对铝粉燃烧释能过程的影响,建立了爆轰环境中铝粉非等温燃烧模型,提出了包括铝粉燃烧过程、爆轰产物气体组分和爆轰环境 体系温度在内的爆轰环境铝粉非等温燃烧控制方程,并通过激光诱导击穿光谱实验进行了验证。结果表明,铝粉非等温燃烧模型控 制方程的计算值与激光诱导击穿光谱实验值的偏差在12%以内,验证了理论模型计算的准确性,获得了铝粉粒度和铝氧比对炸药 中铝粉燃烧特性的影响规律。

关键词:爆轰环境;铝粉;非等温燃烧模型;激光诱导击穿光谱中图分类号:TJ55文献标志码:A

DOI: 10.11943/CJEM2024117

0 引言

对混合炸药各组分间进行微结构设计,进而改变 其反应动力学过程,是有效提升混合炸药能量输出和 能量结构调控的重要手段之一^[1]。铝粉作为高热值燃 料,已被广泛应用于混合炸药中。铝粉在爆轰反应区 外的燃烧释能作为含铝炸药中主要的能量来源之一, 如何提升其反应特性一直是研究者关注的重点^[2-5]。 因此掌握铝粉在爆轰环境中的燃烧特性对含铝炸药配 方微结构设计具有重要意义。

在早期的研究中Glassman^[6]开创性地提出,金属粒子燃烧服从 D²定律,即粒子的燃烧时间 t与粒径 D 的平方成正比,这与纯液滴燃烧模型一致。随后众多研究者针对金属颗粒的燃烧也进行了研究。Brzustowski和 Glassman^[7]首次建立了在含氧气体密闭腔体中基于反应物扩散速率的单个球形铝粒子静态燃烧模型,也被称为 D²模型。在此基础上,Belyaev^[8]、Law^[9]、Liang^[10]和Beckstead^[11]等均对该模型进行了修正。

收稿日期: 2024-05-11; 修回日期: 2024-06-04 网络出版日期: 2024-06-17 基金项目: 国家自然科学基金(22175026) 作者简介: 聂建新(1977-),男,副研究员,主要从事含铝炸药设计 及应用研究。e-mail:niejx@bit.edu.cn 通信联系人: 聂建新(1977-),男,副研究员,主要从事含铝炸药设 计及应用研究。e-mail:niejx@bit.edu.cn

近年来,研究者采用试验与仿真相结合的方法对 不同情况下的铝粉燃烧进行了研究。2015年 Sundaram^[12]总结了纳米铝粒子燃烧研究的最新进展, 确定了粒子燃烧的关键物理化学过程,并通过比较各项 研究的时间尺度,确定了不同粒径和压力下的燃烧机 理。Glorian^[13]通过对单个铝粒子进行数值模拟解释了 铝燃烧过程中发生的非均相反应的作用,同时考虑了气 相和表面动力学机理。Lomba等^[14]进行了微米铝镁粉 恒容燃烧实验,发现平均粒径小于12μm的铝粉火焰温 度接近粒子表面温度。对燃烧产物的分析进一步证实 了气相反应的存在。Sundaram^[15]提出了纳米和微米级 铝粒子点火燃烧的一般理论,这是目前最完善的理论。 他根据相变和化学反应,将氧化过程分为4个阶段。在 第1阶段,粒子被加热到铝核的熔化温度;第2阶段从铝 核熔化开始;在第3阶段,纳米粒子与氧化气体发生剧 烈的自我维持反应;在第4阶段,大尺寸粒子通过气相 或表面反应燃烧。Feng等[16]对单个铝颗粒粒径(40~ 160 μm)在热气体流动中的点火和燃烧进行了研究,将 铝颗粒的点火和燃烧过程分为预热、着火和燃烧3个阶 段,用 D^{1.0} 描述了燃烧时间。Vladimir^[17]研究了水蒸气 中分子氧对铝纳米粒子燃烧的影响,其模型分析表明, 少量添加氧气(摩尔分数为1%至3%)可使铝的燃烧加 速约一个数量级。该研究对铝与不同反应活性气体的 研究具有重要意义。Jiao等^[18]通过仿真的手段对铝颗

引用本文:聂建新,刘正,阚润哲,等.炸药爆轰环境中铝粉非等温燃烧模型[J]. 含能材料,2024,32(10):1110-1117. NIE Jian-xin, LIU Zheng, KAN Run-zhe, et al. Non-isothermal Combustion Model for Aluminum Powder in Explosive Detonation Environment[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2024,32(10):1110-1117.

Chinese Journal of Energetic Materials, Vol.32, No.10, 2024 (1110–1117)

粒在爆轰环境中的核壳响应机制进行了分析。Braconnier等^[19]提出了单个燃烧铝液滴(30~130 μm)的燃烧 时间经验关系,认为燃烧时间与粒径的1.72次方成正 比。Wang等^[20]首次在远离推进剂表面对单个铝颗粒 的时空动态进行了研究,建立了铝颗粒的燃烧时间表达 式。Houim^[21]采用多维数值方法研究了TNT装药分散 的铝粉点火和燃烧过程。Nie等^[22]研究了铝颗粒在高 温(10³ K)、高压(GPa)和高速运动(km·s⁻¹)爆轰环境中 的燃烧机理,建立了铝颗粒爆轰环境下的燃烧模型。

由上可见,从静态加热燃烧条件到冲击、爆轰环 境,国内外学者们建立了一系列铝粉燃烧模型及其修 正模型,修正模型中铝颗粒燃烧时间与简单的D²模型 不同,指数从2.0到1.2不等,主要以常压高温环境为 主,但高温高压强对流的爆轰环境下燃烧模型的研究 仍然较少。此外,已有的爆轰环境下铝颗粒的燃烧模 型还缺乏铝粉与含氧爆轰产物之间的复杂燃烧过程, 不具备对爆轰环境铝粉燃烧这一非等温体系进行求解 的能力。因此,本研究在铝粉爆轰环境燃烧模型^[22]的 基础上,进一步考虑了爆轰产物气体组分和爆轰环境 体系温度对铝粉燃烧释能过程的影响,建立了爆轰环 境中铝粉非等温燃烧模型,给出了铝粉非等温燃烧控 制方程,并通过激光诱导击穿光谱实验进行了验证。

1 理论部分

1.1 爆轰环境中铝粉非等温燃烧模型

通过 JEM-2100F 检测获得的典型铝颗粒的透射电 镜图,如图1所示。由图1可以看到,铝颗粒表面有一 层氧化铝外壳,形成典型的"核-壳"结构,铝颗粒发生 燃烧反应的前提是铝颗粒内部的铝突破氧化铝壳,与 氧化性物质接触。

研究表明,炸药爆炸形成的爆轰环境具有高温、高 压、强对流等特点。爆轰环境中铝颗粒燃烧过程可分 为以下3个阶段^[22]:

第1阶段,铝颗粒受爆轰波作用发生氧化铝壳的 碎裂;

第2阶段,铝颗粒的铝核气化并与爆轰产物接触 发生氧化反应;

第3阶段,铝颗粒气化燃烧,直至反应结束。

但实际环境中,一方面,铝粉反应的反应速率受铝

$$\dot{W}_{c}|_{d_{50}} = \int_{d_{50}-3\sigma}^{d_{50}+3\sigma} \frac{3\Omega\sqrt{3mkT}}{\pi r^{3}\rho x \frac{1}{\sqrt{2\pi}\sigma x} \exp\left(-\frac{(\ln x - \mu)^{2}}{2\sigma^{2}}\right)} \left(1 - W_{v}\right)^{\frac{2}{3}} e^{-\frac{E_{v}}{RT}} dv$$

粉和含氧气体浓度的影响;另一方面,铝粉与含氧气体 的反应释能,会引起体系温度发生变化,因此,第3阶 段应表现为铝核继续气化并与爆轰产物接触,铝发生 氧化反应,释放能量提高体系温度,并加剧燃烧反应。 对此,在铝粉爆轰环境燃烧模型的基础上,进一步考虑 了爆轰产物气体组分和爆轰环境体系温度对铝粉燃烧 释能过程的影响,建立了爆轰环境中铝粉非等温燃烧 模型。该模型所述的各燃烧阶段如图2所示。

图1 铝颗粒的透射电镜图

Fig.1 TEM of aluminum particles

Fig.2 Non-isothermal combustion model of aluminum powder in detonation environment

1.2 爆轰环境中铝粉非等温燃烧控制方程

1.2.1 铝粉非等温燃烧控制方程

在铝颗粒爆轰环境燃烧等温方程中,其燃烧速率 和燃烧率控制方程^[22]可表示为:

$$(1 - W_v)^{\frac{2}{3}} e^{-\frac{E_v}{RT}} dx$$
 (1)

CHINESE JOURNAL OF ENERGETIC MATERIALS

$$W_{c}|_{d_{50}} = \int_{d_{50}-3\sigma}^{d_{50}+3\sigma} \frac{3\Omega\sqrt{3mkT}}{\pi r^{3}\rho x \frac{1}{\sqrt{2\pi}\sigma x} \exp\left(-\frac{(\ln x - \mu)^{2}}{2\sigma^{2}}\right)} e^{-\frac{E_{v}}{RT}\int_{0}^{t} (1 - W_{v})^{\frac{2}{3}} dt dx}$$

式中, d_{50} 为中位直径, μ m; μ 和 σ 为对数正态分布拟合 函数的参数; Ω 为扩散系数;m为每个铝原子的质量, kg;k为波尔兹曼常数,其值为1.38×10⁻²³ J·K⁻¹;T为 体系温度,K;r为原子的半径,m;x球形铝粒子的直 径,m; ρ 是铝的密度,其值为2700 kg·m⁻³; E_{v} 为铝的 气化焓,其值为2.87×10⁵ J·mol⁻¹;R为普适气体常 量,其值为8.314 J·mol⁻¹·K⁻¹; W_{v} 铝颗粒的蒸发质量 分数。

根据图2所示的非等温图论模型,将含铝炸药体 系温度的变化过程、铝粉燃烧导致的爆轰产物种类和 含量的变化过程进行耦合求解。同时为了优化计算效 率,对爆轰气体环境中铝粉非等温燃烧控制方程的求 解过程进行如下假设:

(1)每个时间段内铝粉所处的体系温度是恒定的。即当时间范围足够小时,时间段内铝粉燃烧升温 可以被忽略;

(2)初始体系温度为常数,可由爆轰环境体系温 度控制方程求解获得。即铝粉燃烧初始体系温度为单 质炸药爆轰后爆轰产物与铝粉形成的稳态温度;

$$\left(1 - W_{v}\right)^{\frac{2}{3}} \mathrm{d}t \mathrm{d}x \tag{2}$$

(3)每一个时间段内的体系平衡温度作为下一个 阶段的起始温度;

(4) 不考虑爆轰产物膨胀所导致的温度下降。

根据以上假设,每个时间段内的铝粉的燃烧率为 当前时刻燃烧率和上一步截止时刻燃烧率的差值,可 表示为:

$$\Delta W_{rc}|_{d_{50}}(j) = W_{rc}|_{d_{50}}(j) - W_{rc}|_{d_{50}}(j-1)$$
(3)
式中, $W_{rc}|_{d_{50}}(j)$ 为考虑燃烧反应的燃烧率, 无量纲, j
为求解步数。则自铝粉燃烧起至当前时刻 t 内的燃烧

率可表示为: $W_{rol}(t) = \sum_{i=1}^{j} \Delta W_{rol}(i)$ (4)

$$W_{rc} I_{d_{50}}(t) = \sum_{0} \Delta W_{rc} I_{d_{50}}(f)$$

$$i = t/\Delta t$$
(5)

式中,t为求解时间, Δt 为求解时间步长,即每个时间段的求解时间, s_{\circ}

根据假设,每个时间段内铝粉所处的体系温度是 恒定的,并且每一个时间段内的体系平衡温度作为下 一个阶段的起始温度。由式(2)可知,当前时间段燃 烧率可表示为:

$$\Delta W_{rc}|_{d_{50}}(j) = \int_{d_{50}-3\sigma}^{d_{50}+3\sigma} \frac{3\Omega \sqrt{3mkT(j-1)}}{\pi r^{3}\rho x \frac{1}{\sqrt{2\pi}\sigma x} \exp\left(-\frac{(\ln x-\mu)^{2}}{2\sigma^{2}}\right)} e^{-\frac{E_{v}}{RT(j-1)}} \int_{(j-1)\Delta t}^{j\Delta t} \left(1 - W_{v}(T(j-1))\right)^{\frac{2}{3}} dt dx$$
(6)

联立公式(3)和(6)有

$$\Delta W_{rc}|_{d_{50}}(j) = \int_{d_{50}-3\sigma}^{d_{50}+3\sigma} \frac{3\Omega \sqrt{3mkT(j-1)}}{\pi r^{3}\rho x \frac{1}{\sqrt{2\pi}\sigma x} \exp\left(-\frac{(\ln x-\mu)^{2}}{2\sigma^{2}}\right)} e^{-\frac{E_{v}}{RT(j-1)}} \int_{(j-1)\Delta t}^{j\Delta t} \left(1 - W_{v}\left(T(j-1)\right)\right)^{\frac{2}{3}} dt dx - W_{rc}|_{d_{50}}(j-1)$$
(7)

其中 T(j)为第 j步截止时的体系温度,由第 j步反应物 种类与体系温度控制方程求解获得,式(7)为当前反 应时间段内铝粉燃烧率控制方程。

根据二次反应理论和最大放热原则^[23],可获得含 铝炸药中单质炸药和铝粉的爆轰产物种类,对每个时 间段内铝粉燃烧释放的热量进行计算。其表达式为:

$$M_{\rm Al}(j) = \Delta W_{\rm rc}|_{d_{\rm so}}(j) \cdot {\rm Al}_{\rm mol}$$
(8)

$$Q_{\nu}(j) = M_{AI}(j) \cdot Q_{\nu i} \cdot w_{i} + Q_{\nu}(j-1)$$
(9)

$$n_{i}(j) = n_{i}(j-1) - M_{AI}(j)w_{i}$$
(10)

式中, M_{AI} 为反应的铝的摩尔数, AI_{mol} 为铝的总摩尔数, Q_{vi} 为铝粉与第*i*种含氧气体反应释放的热量, w_i 参与 第i种含氧气体反应的铝的比例。

通过添加初始条件,可实现铝粉非等温燃烧过程的求解,其求解过程如图3所示。以CL-20含铝炸药为例,根据假设和计算,初始条件可表示为:

$$Q_{v}(0) = w_{CL-20}Q_{CL-20}$$
(11)

$$n_i(0) = \alpha_i W_{\rm Al} \tag{12}$$

式中, Q_{CL-20}为CL-20单质炸药爆热, α_i为CL-20单质炸 药爆炸后各产物的化学计量数, w_{CL-20}和 w_{AI}分别表示 含铝炸药中CL-20和铝粉含量。

1.2.2 爆轰环境体系温度控制方程

根据铝粉非等温燃烧控制方程可知,体系温度是 决定铝粉燃烧时间,燃烧速率的重要影响因素之一,准

图3 铝粉非等温燃烧求解过程示意图

Fig.3 Schematic diagram of the solution process for non-isothermal combustion of aluminum powder

确计算含铝炸药爆炸阶段中任意时刻体系温度是决定 计算精度的关键环节。为了简化体系温度计算方法, 对含铝炸药爆炸反应各阶段作以下假设:

(1)含铝炸药中铝粉在爆轰反应区内不参与反应,但是发生吸热和相变;

(2)含铝炸药中除铝粉和单质炸药外的其他成分(粘合剂、石墨等)燃烧反应均发生在爆轰反应区内;

(3)含铝炸药中单质炸药爆炸和铝粉燃烧产生的 热量全部用来加热爆轰产物与还未反应的铝粉,不考 虑对外界的能量损失;

(4)爆轰产物的热容只是温度的函数,与压力、密 度等参数无关。

从焓出发,可计算标准状态下爆轰产物的热力学 函数,焓与温度的关系可用四次多项式^[24]表示: $(H_T^0 - H_{298}^0) = c_1 + c_2T + c_3T^2 + c_4T^3 + c_5T^4$ (13)

$$\left(E_{T}^{0}-E_{298}^{0}\right)=\left(H_{T}^{0}-H_{298}^{0}\right)-RT$$
(14)

$$Q_{v} = \sum n_{i} \left(E_{T}^{0} - E_{298}^{0} \right)_{i}$$
(15)

式中, H_{τ}^{0} , H_{298}^{0} 分别表示温度为T和298K时产物的 焓,J·mol⁻¹; E_{τ}^{0} , E_{298}^{0} 分别表示温度为T和298K时产 物的内能,J·mol⁻¹; Q_{v} 为等容燃烧热,J·kg⁻¹; n_{i} 为第*i*种 燃烧产物的摩尔数,mol; $c_{1}\sim c_{5}$ 为描述热力学函数对温 度依赖性的多项式常数。

根据1.2.1节假设,结合式(13)~(15)可知,体系 温度 T(j)可由式(16)求解获得

$$Q_{\nu}(j) = \sum n_{i}(j) \Big(c_{1} + c_{2}T(j) + c_{3}T(j)^{2} + c_{4}T(j)^{3} + c_{5}T(j)^{4} - RT(j) \Big)$$
(16)

通过 MATLAB 软件求解 T(j),对不同铝含量的 CL-20 基含铝炸药初始燃烧温度和爆温进行计算,其 中,初始燃烧温度是指铝粉不参与反应,只发生吸热和 相变时的体系温度;爆温是指铝粉与爆轰产物中含氧 气体反应后的体系温度。为了验证体系温度控制方程 的准确性,将 MATLAB 计算结果与 EXPLO 5 软件^[25]计 算结果进行了对比,如表1所示。

由表1可知,MATLAB程序计算结果与EXPLO5 软件计算结果偏差在8%以内,吻合度较好^[26],其偏差 主要是由于MATLAB程序所考虑的产物种类有限,以 及平衡状态各产物含量差异所导致。初始体系温度随 铝含量的增大而降低,这是由于单质炸药的含量下降, 爆轰反应区内释放的能量降低。此外,由于铝粉的吸 热增加,导致体系温度逐步降低。而含铝炸药爆炸温 度则随着铝含量的增加而先升高后降低,这是由于铝

表1 爆轰环境体系温度计算结果

 Table 1
 Temperature calculation results of the detonation environment system

composition of alumi- nized explosives / %		initial system temperature / K			explosive detonation temperature / K		
CL-20	Al	temperature control equation	EXPLO 5	relative error / %	temperature control equation	EXPLO 5	relative error / %
95	5	3869	3832	0.97	4527	4420	2.42
90	10	3585	3606	-0.58	4822	4769	1.11
85	15	3342	3401	-1.73	5098	5030	1.35
80	20	3127	3222	-2.95	5351	5428	-1.42
75	25	2933	3048	-3.77	5580	5687	-1.88
70	30	2753	2886	-4.61	5782	5871	-1.52
65	35	2584	2734	-5.49	5837	5622	3.82
60	40	2424	2583	-6.16	5154	5002	3.04
55	45	2270	2436	-6.81	4597	4484	2.52
50	50	2119	2295	-7.67	4076	4073	0.07

CHINESE JOURNAL OF ENERGETIC MATERIALS

粉与爆轰产物之间燃烧释放的热量所导致的,当铝含量升高时,铝粉燃烧释放能量提高了体系温度,但当铝粉过量时,爆轰产物中含氧气体不足以支持所有的铝粉燃烧释能,加之爆轰反应区能量降低,从而导致体系温度降低。可见由爆轰环境体系温度控制方程计算获得的温度结果准确性是良好的。

1.2.3 反应速率修正项

铝粉与爆轰气体的反应过程与爆轰产物中含氧气

体的浓度密切相关,因此在爆轰环境铝粉非等温燃烧 模型中引入反应速率项,以此对爆轰产物浓度导致的 铝粉燃烧过程进行修正,反应速率项为:

$$V_{c} = \frac{M_{\text{oxide}} - M_{\text{raction}}}{M_{\text{total}} - M_{\text{raction}}}$$
(17)

式中, M_{oxide}, M_{raction}和 M_{total}分别为含氧气体总摩尔质量, 含氧气体反应消耗的摩尔质量和爆轰产物中总的气体 摩尔质量, 则爆轰环境中铝粉的燃烧率方程可改写为:

$$\Delta W_{rc}|_{d_{50}}(j) = \int_{d_{50}-3\sigma}^{d_{50}+3\sigma} \frac{3 V_{c} \Omega \sqrt{3 m k T(j-1)}}{\pi r^{3} \rho x \frac{1}{\sqrt{2\pi} \sigma x} \exp\left(-\frac{(\ln x-\mu)^{2}}{2\sigma^{2}}\right)} e^{-\frac{E_{c}}{RT(j-1)} \int_{(j-1)\Delta t}^{j\Delta t} \left(1 - W_{v}(T(j-1))\right)^{\frac{2}{3}} dt dx - W_{rc}|_{d_{50}}(j-1)}$$
(18)

2 模型的验证

2.1 激光诱导击穿光谱实验

激光诱导击穿光谱为研究炸药爆轰性能和实现对 元素定性定量分析提供了条件^[27-28]。为了对含铝炸 药中铝粉非等温燃烧模型进行验证,开展了激光诱导 击穿光谱实验。实验系统主要由 Hercules-1000-TH 激光器,激发光源 1064 nm,600 mJ; Avantes Avsdesktop USB2 光谱仪; SDS5034x 四通道示波器; DG535 四通道数字信号发生器等组成。

以不同铝粉粒度和不同铝粉含量为目标,设计了 3组CL-20/AI炸药样品的激光诱导击穿光谱实验。其 中铝粉为球形铝粉,中位径 *d*₅₀分别为13 μm和24 μm, 样品参数如表2 所示。

表2 CL-20/AI炸药样品参数

Table 2 Parameters of CL-20/Al explosive sample

No.	CL-20 content / %	Al content / %	d ₅₀ /μm
S-A	90	10	13
S-B	90	10	24
S-C	80	20	13

2.2 实验结果与模型验证

通过对光谱信号进行降噪,背景校正,数据清洗和 光谱标准化等处理^[28],获得不同时刻AIO光谱强度, 为保证测试结果可靠性,每个样品重复实验3次,以平 均值作为实验结果。从特征光谱中提取的AIO强度 随时间演化结果如图4所示。

样品的激光诱导击穿光谱可以分为3个阶段,第 1个阶段是表面材料表面氧化层的反应,并随着电子 向基态的跃迁,强度下降;第2个阶段是铝与爆轰产物 中含氧气体的氧化反应,AIO强度上升,并逐渐达到峰

图 4 CL-20/AI 等离子体辐射光谱变化曲线 Fig.4 Plasma radiation spectral variation curves of CL-20/AI

值;第3个阶段是铝氧化反应的减弱与停止,铝氧化反应速率达到最大后,由于含氧气体浓度的降低和剩余 铝粉质量的减少,反应速率逐渐减缓直至停止,辐射强 度逐渐回落。

基于该实验,可以推断不同样品中铝粉反应速率, 其中第2个阶段持续时间即为铝粉燃烧速率最大时刻 对应时间。通过提取激光诱导击穿光谱实验中铝粉燃 烧速率最大时刻对应时间与模型计算结果进行对比, 可以对模型计算结果进行验证。表3中给出了不同样 品燃烧速率峰值对应时刻计算值与实验值对比结果。

表 3 燃烧速率峰值对应时刻计算值与实验值对比 Table 3 Comparison of calculated and experimental values for the moments corresponding to the peak burning rate

No.	the moments corresponding to the peak burning rate / μs					
	experimental value	calculated value	relative error / %			
S-A	11.99	10.92	-8.92			
S-B	18.21	20.24	11.15			
S-C	17.18	18.30	6.52			

由表3可以看出,选取的不同粒度和不同铅含量 样品燃烧速率峰值对应时刻计算值与实验值的偏差在 12%以内,验证了爆轰环境铝粉非等温燃烧控制方程 计算的准确性。

3 铝粉燃烧特性的模拟研究

3.1 铝粉粒度对铝粉燃烧行为的影响规律

根据爆轰环境铝粉非等温燃烧控制方程可知,炸 药中铝粉的铝粉粒度是影响铝粉燃烧过程的重要因 素。本节选取了4种不同粒度(2,13,24 μm和43 μm) 的铝粉,并采用爆轰环境中铝粉非等温燃烧模型控制 方程计算了 CL-20/Al=90/10炸药样品爆炸后铝粉燃 烧过程,如图5所示。

由图5可以看出,在所研究铝粉粒度范围内,随着 铝粉粒径不断增大,铝粉的燃烧时间增加(图5a),最 大燃烧速率降低,燃烧上升时间变长(图5b)。原因是 根据控制方程(15)可知,在体系温度和扩散系数一定

图 5 不同铝粉粒径 CL-20/AI 炸药中铝粉燃烧率和燃烧速率 Fig. 5 Combustion ratio and combustion rate of aluminum powder in CL-20/AI explosives with different aluminum powder particle size

的情况下,铝粉的燃烧速率只受到铝粉粒度的影响。 因此粒度越大,燃烧时间越长,燃烧速率越低。

3.2 铝粉含量对铝粉燃烧行为的影响规律

根据爆轰环境铝粉非等温燃烧控制方程可知,炸 药中铝粉的含量控制了燃烧温度和扩散系数,对铝粉 的燃烧过程有巨大影响。本研究以10%铝粉含量为 梯度,通过爆轰环境铝粉非等温燃烧控制方程对4组 不同铝粉含量条件下CL-20/AI炸药样品爆炸后铝粉 燃烧过程进行了计算,如图6所示。

根据图 6a 和图 6b 可以看出,随着铝粉含量不断 增加,铝粉的燃烧时间增大(图 6a),最大燃烧速率增 大,燃烧上升时间变短(图 6b)。原因是随着铝粉含量 的增加,初始燃烧温度降低,但炸药爆炸温度(即终态 温度,如表1)升高,使得温度变化范围增大。而铝粉 爆轰环境中燃烧控制方程(15)表明,铝粉燃烧过程受 体系温度的影响相对显著,因此在温度较低时铝粉的 燃烧速率和燃烧率较低,但当温度梯度以不断增加的

图 6 不同铝粉含量 CL-20/AI 炸药中铝粉燃烧率和燃烧速率 Fig. 6 Combustion ratio and combustion rate of aluminum powder in CL-20/AI explosives with different aluminum powder contents

趋势而上升时,使得燃烧速率得到提高,燃烧率快速 上升。

4 结论

(1)建立了炸药爆轰环境中铝粉非等温燃烧模型,综合考虑了爆轰产物气体组分和爆轰环境体系温度的影响,同时引入了考虑爆轰产物含量的反应速率修正项,给出了爆轰环境中铝粉非等温燃烧控制方程。

(2)开展了激光诱导击穿光谱实验,不同铝粉粒 度和不同铝粉含量样品的燃烧速率峰值对应时刻计算 值与激光诱导击穿光谱实验值的偏差在12%以内,验 证了所建立模型的准确性。

(3)运用建立的爆轰环境铝粉非等温燃烧控制方程,研究了CL-20/AI体系中铝粉粒度和铝粉含量对其燃烧特性的影响规律。结果表明,在所研究铝粉粒度和铝粉含量范围内,随着铝粉粒度的增加,铝粉的燃烧时间增加,最大燃烧速率降低。随着铝粉含量的增加, 铝粉的燃烧时间增加,最大燃烧速率增大。

参考文献:

- [1] 高涵, 冯晓军, 尚宇, 等. 混合炸药微结构设计与制备研究进展
 [J]. 火炸药学报, 2023, 46(9): 761-775.
 GAO Han, FENG Xiao-jun, SHANG Yu, et, al. Research progress of microstrcuture design and preparation of mixed explosives [J]. Chinese Journal of Explosives & Propellants, 2023, 46(9): 761-775.
- [2] 李淑睿,段卓平,白志玲,等.2,4-二硝基苯甲醚基熔铸含铝炸药冲击起爆特性[J]. 兵工学报,2022,43(6):1288-1294.
 LI Shu-rui, DUAN Zhuo-ping, BAI Zhi-ling, et, al. Shock initiation characteristics of DNAN-based aluminized melt-cast explosive[J]. Acta Armamentarii, 2022, 43(6):1288-1294.
- [3] 王虹富, 白帆, 刘彦, 等. 爆炸冲击波作用下黑索今基含铅炸药的冲击点火反应速率模型[J]. 兵工学报, 2021, 42(2): 327-339.
 WANG Hong-fu, BAI Fan, LIU Yan, et, al. Ignition reaction rate model of RDX-based aluminized explosives under shock waves[J]. Acta Armamentarii, 2021, 42(2): 327-339.
- [4] 方伟,赵省向,张奇,等.含微/纳米铝粉燃料空气炸药爆炸特性
 [J].含能材料,2021,29(10):971-976.
 FANG Wei, ZHAO Sheng-xiang, ZHANG Qi, et al. Explosion characteristics of fuel-air explosive containing micro/ nano-aluminum powder[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(10):971-976.
- [5] LI Y R, REN H, WU X Z, et al. Estimating energy release performance of oxidizer-activated aluminum fuel particles under ultrafast stimulus[J]. *Defence Technology*, 2023, 23: 92–99.
- [6] GLASSMAN I. Metal combustion processes [R]. Princeton: Princeton Univ NJ James Forrestal Research Center, 1959.
- [7] BRZUSTOWSKI T A, GLASSMAN I. Spectroscopic investigation of metal combustion [M]. Amsterdam: Elsevier, 1964: 41-73.

- [8] BELYAEV A F, FROLOV Y V, KOROTKOV A I. Combustion and ignition of particles of finely dispersed aluminum[J]. *Combustion*, *Explosion and Shock Waves*, 1968, 4(3): 182–185.
- [9] LAW C K. A simplified theoretical model for the vapor-phase combustion of metal particles [J]. *Combustion Science and Technology*, 1973, 7(5): 197–212.
- [10] LIANG Y, BECKSTEAD M W. Numerical simulation of quasi-steady, single aluminum particle combustion in air[C]// 36th Aerospace Sciences Meeting & Exhibit, Reno, NV. 1998: 29.
- [11] BECKSTEAD M W. A summary of aluminum combustion [R].Brigham Yang Univ Provo Ut, 2004.
- [12] SUNDARAM D S, YANG V, ZARKO V E. Combustion of nano aluminum particles[J]. Combustion, Explosion, and Shock Waves, 2015, 51(2): 173-196.
- [13] GLORIAN J, GALLIER S, CATOIRE L. On the role of heterogeneous reactions in aluminum combustion[J]. *Combustion and Flame*, 2016, 168: 378–392.
- [14] LOMBA R, BERNARD S, GILLARD P. Comparison of combustion characteristics of magnesium and aluminum powders [J]. *Combustion Science and Technology*, 2016, 188 (11–12) : 1857–1877.
- [15] SUNDARAM D S, PURI P, YANG V. A general theory of ignition and combustion of nano-and micron-sized aluminum particles[J]. Combustion and Flame, 2016, 169: 94–109.
- [16] FENG Y C, XIA Z X, HUANG L Y, et al. Ignition and combustion of a single aluminum particle in hot gas flow[J]. *Combustion and Flame*, 2018, 196:35–44.
- [17] VLADIMIR B, STOROZHEV, ALEXANDER N. Yermakov. Activation of aluminum nanopowder combustion in water vapor by O2 additions [J]. Combustion and Flame, 2019, 200: 82-84.
- [18] JIAO Q J, WANG Q S, NIE J X, et al. Structural response of aluminum core-shell particles in detonation environment [J]. *Chinese Physics B*, 2019, 28(8): 088201.
- [19] BRACONNIER A, GALLIER S, HALTER F, et al. Aluminum combustion in CO₂-CO-N₂ mixtures [J]. Proceedings of the Combustion Institute, 2021, 38(3): 4355-4363.
- [20] WANG J, WANG N, ZOU X, et al. Modeling of micro aluminum particle combustion in multiple oxidizers [J]. *Acta Astronautica*, 2021, 189: 119–128.
- [21] HOUIM R W, POSEY J, GUHATHAKURTA S. Ignition and combustion of TNT-dispersed aluminum powder [J]. International Journal of Energetic Materials and Chemical Propulsion, 2022, 21(2): 1-14.
- [22] NIE J X, KAN R Z, JIAO Q J, et al. Studies on aluminum powder combustion in detonation environment [J]. *Chinese Physics B*, 2022, 31(4): 044703.
- [23] 孙业斌, 慧君明, 曹欣茂. 军用混合炸药[M]. 兵器工业出版 社, 1995: 386-388.
 SUN Ye-bin, HUI Jun-ming, CAO Xin-mao. Military composite explosive[M]. The Publishing House of Ordnance Industry, 1995: 386-388.
- [24] 王永顺, 贾宪振, 刘瑞鹏. 含铝炸药爆轰产物 JWL 状态方程参数 的预估方法研究[J]. 爆破, 2019, 36(1): 49-54.
 WANG Yong-shun, JIA Xian-zhen, LIU Rui-peng. JWL equation state parameters prediction of aluminized explosive [J]. *Blasting*, 2019, 36(1): 49-54.

- [25] SUCESKA M, ANG H G, SERENE CHAN H Y. Study of the effect of covolumes in BKW equation of state on detonation properties of CHNO explosives [J]. *Propellants, Explosives, Pyrotechnics*, 2013, 38(1): 103–112.
- [26] 王志荣,蒋军成,李玲.容器内可燃气体燃爆温度与压力的计算 方法[J].南京工业大学学报(自然科学版),2004,(1):9-12.
 WANG Zhi-rong, JIANG Jun-cheng, LI Ling. Computation methods of explosion temperature and pressure of gas explosion in vessels[J]. *Journal of Nanjing Tech University(Natural Science Edition*),2004,(1):9-12.
- [27] 吉祥波, 唐舵, 覃文志, 等. 纳米铝粉掺杂太安炸药的激光烧蚀

特性[J]. 含能材料, 2023, 31(6): 598-605.

JI Xiang-bo, TANG Duo, QIN Wen-zhi, et al. Laser ablation characteristics of PETN explosive doped with nano-aluminum powder [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2023, 31(6): 598–605.

[28] 王宪双.火炸药性能快速检测激光加载微爆方法及机理研究
 [D].北京:北京理工大学,2023.
 WANG Xian-shuang. Study on the method and related mechanism for rapid determination of explosive performance based on laser-loaded micro-explosion[D]. Beijing: Beijing Institute of Technology, 2023.

Non-isothermal Combustion Model for Aluminum Powder in Explosive Detonation Environment

NIE Jian-xin¹, LIU Zheng¹, KAN Run-zhe^{1,2}, GUO Xue-yong¹, JIAO Qing-jie¹, YAN Shi¹

(1. State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China; 2. Hefei Institute for Public Safety Research, Tsinghua University, Hefei 230000, China)

Abstract: In order to study the combustion characteristics of aluminum powder in the detonation environment, based on the combustion model of aluminum powder in the detonation environment, the non-isothermal combustion model of aluminum powder in the detonation environment was established by comprehensively considering the effects of gas components of the detonation products and the temperature of the detonation environment system on the combustion and energy release process of aluminum powder. The non-isothermal combustion control equations of aluminum powder in the detonation environment, including the combustion process of aluminum powder, the gas components of the detonation products and the temperature of the detonation environment of the detonation environment system, were proposed. And it was verified by laser induced breakdown spectroscopy experiments. The results show that the deviation between the calculated values of the non-isothermal combustion model control equation of aluminum powder and the experimental values of laser induced breakdown spectroscopy is within 12%, which verifies the accuracy of the theoretical model calculation. The laws of the influence of aluminum powder particle size and aluminum-oxygen ratio on the combustion characteristics of aluminum powder in explosives were obtained.

Key words: detonation environment; aluminum powder; non-isothermal combustion model; laser-induced breakdown spectroscopy

CLC number: TJ55 Document code: A Grant support: National Natural Science Foundation of China (No. 22175026) DOI: 10.11943/CJEM2024117

(责编: 姜 梅)