文章编号:1006-9941(XXXX)XX-0001-13

聚能射流侵彻有限厚钢靶后效参数的特性

方一舟,张先锋,熊 玮,刘 闯,谈梦婷 (南京理工大学机械工程学院,江苏南京 210094)

摘 要:为研究聚能射流对有限厚钢靶的侵彻后效参数特性,开展了小口径聚能装药射流成型及侵彻带有靶后效应物的有限厚靶 板实验,利用ANSYS/LS-DYNA有限元软件进行了聚能射流侵彻有限厚靶板作用过程数值模拟计算,分析了靶板厚度、炸高及靶后 效应物密度对聚能射流侵彻后效参数的影响,包括剩余射流头部直径d、头部速度v及后效引爆炸药能力参数v²d。研究结果表明: 随着靶厚的增加,后效引爆威力v²d呈现线性衰减趋势,厚度每增加20mm约损失初始引爆威力参数的16%;在聚能射流保持连续 的炸高范围内,随着炸高的增加,后效引爆威力参数v²d呈现先增大后减小的趋势,其驻点出现于炸高为8倍聚能装药口径处;在常 见的炸药密度范围内,随着靶后效应物密度ρ的增大,引爆威力参数v²d衰减速率呈现先减小后增大的趋势;在相同时刻下,v²d-ρ曲 线存在一个驻点,v²d最大值分布于ρ=1.6~1.8 g·cm⁻³之间,且驻点位置随侵彻时间增大而右移。

关键词:聚能射流;有限厚靶板;冲击引爆;靶后引爆威力;靶后效应物 中图分类号: TJ55;O385 **文献标志码:** A

DOI:10.11943/CJEM2024107

0 引言

随着国外坚固类导弹/制导炸弹及低易损性炸药 的应用与发展,防空反导技术的研究与发展迫在眉睫。 由于反高价值硬目标战斗部多采用大厚度高强韧性壳 体,内部装填有性能稳定的低易损炸药,这对反导弹药 的引爆能力提出了新挑战。为实现对来袭导弹目标的 "命中即毁",具有高速、高比动能优势的聚能射流成为 防空反导作战中最主要的毁伤元,其作用过程可等效 为射流对厚壁材料屏蔽炸药的冲击引爆问题,射流贯 穿壳体后的后效参数直接决定了其冲击引爆能力。因 此,研究聚能射流对有限厚靶板的侵彻后效参数特性 对防空反导聚能装药的设计具有重要的指导意义。

近年来,国内外学者针对聚能射流侵彻引爆带壳 装药问题开展了大量的研究工作。在聚能射流与有限

收稿日期: 2024-04-22;修回日期: 2024-05-26
网络出版日期: 2024-08-15
基金项目:国家自然科学基金(12141202,12002170)
作者简介:方一舟(1997-),男,博士研究生,高效毁伤技术.
e-mail: funezhou@163.com
通信联系人: 张先锋(1978-),男,博士,教授,高效毁伤技术.
e-mail: lynx@njust.edu.cn

厚靶板相互作用方面,Brown等^[1]首先注意到,当聚能 射流贯穿有限厚靶板时,靶板穿孔对射流头部的侵蚀 导致了射流长度的额外损失。Svirsky等^[2]研究了聚能 射流侵彻有限厚及间隔靶板问题,给出了射流对典型 靶体侵彻能力损失的半经验模型,能够较准确的反映 射流长度及速度的损失。Chen等^[3-4]在研究聚能射流 冲击起爆屏蔽炸药时,计算了射流对有限厚靶板的侵 彻孔径,并通过上限法求解了侵彻过程中靶板的塑性 流动场,得出了靶板背部鼓包的计算公式,其工作的研 究重点在于靶板的变形。方一舟等[5]研究了考虑形状 分布特性的聚能射流侵彻作用规律,分析了射流形状 对侵彻孔型及后效参数的影响,但并未考虑靶后效应 物对侵彻作用的影响。在聚能射流冲击引爆炸药方 面,Held等[6-7]通过不同口径聚能装药的冲击引爆实 验提出了著名的射流引爆炸药判据 vd.其中 v为射流 头部速度,d为射流头部直径,vd准则形式简洁且准 确性良好,被广泛应用于工程实际中对射流引爆能力 的表征。张先锋等[8-9]开展了聚能射流与爆炸成型弹 丸引爆带壳炸药的数值模拟研究,计算了不同厚度有 限厚靶板的后效引爆威力并得出结论认为,射流引爆 带壳装药判据 v²d较为准确。Chick^[10-13]、Mader^[14-15] 及 Arnold 等^[16-18]基于射流引爆炸药判据 v²d,分别考

引用本文:方一舟,张先锋,熊玮,等.聚能射流侵彻有限厚钢靶后效参数的特性[J]. 含能材料, DOI:10.11943/CJEM2024107. FANG Yi-zhou,ZHANG Xian-feng,XIONG Wei, et al. Characteristics of after-effect parameters of Shaped Charge Jet Penetrating Finite Thickness Steel Target[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), DOI:10.11943/CJEM2024107.

CHINESE JOURNAL OF ENERGETIC MATERIALS

虑了有限厚靶板约束条件、射流密度及直径等因素,对 临界引爆阈值模型进行了优化与发展。

综上所述,国内外学者开展了大量的射流侵彻有 限厚靶及其后效特性方面的研究工作,主要集中于射 流侵彻有限厚靶板的能力损失及后效参数的定性描 述,较少关注弹靶参数及靶后效应物(炸药等效物)对 射流侵彻后效参数的影响规律。基于此,为进一步分 析靶板厚度、炸高及靶后效应物等因素对聚能射流侵 彻后效参数的影响规律,开展了50 mm聚能装药的射 流成型及侵彻有限厚靶板(考虑靶后效应物)实验。利 用ANSYS/LS-DYNA有限元软件开展了不同工况下的 聚能射流侵彻有限厚靶板数值模拟计算,系统分析了 靶厚、炸高及靶后效应物密度对聚能射流侵彻后效参 数的影响。

1 聚能射流侵彻有限厚靶板实验

1.1 实验装置与布局

为研究聚能射流对有限厚靶板的侵彻及后效作 用,开展了聚能射流侵彻有限厚靶板及靶后效应物的 实验,并利用脉冲X光获取射流成型状态及侵彻过程 形态。聚能装药及药型罩参数见表1,实验中炸高为 3D₀, D₀为聚能装药口径(50 mm)。靶板尺寸为 **Φ**150×40 mm,靶板材料为30CrMnSiNi2A高强度钢, 经淬火处理后洛氏硬度HRC为45,屈服强度约为 1500 MPa,弹靶情况如图1a所示。实验根据靶后是 否设置效应物设计两种工况,为获取聚能射流侵彻后 效参数,设置有限厚靶板与后效靶板距离为100 mm。 靶后效应物材料为氯丁橡胶,其材料密度及声速与常 用炸药TNT相近,参数可见文献[19-20]。靶后效应 物尺寸为**Φ**40×100 mm。实验设置情况如图1所示。

实验共设置两台相同的X射线管,拍摄方向呈90° 放置,分别为射线管A与射线管B(如图1b所示),两 台射线管在不同时刻出光,在底片上形成射流在不同 时刻的图像。为精确测量射流穿靶后的剩余速度及形 态参数,对实验中的测量值及射流参数的计算进行了 定义,图2为射流参数计算示意图。

 X_1 与 X_2 分别为X射线出光口与弹靶中心及X光底

表1 聚能装药及药型罩参数表

l able 1	Parameters	of shaped	charge	and liner	
					_

part	diameter / mm	material	mass / g	height / mm
charge	50.0	JH-2	80	59
liner	48.8	copper	26	47.1

片的垂直距离,底片影像对聚能射流的放大比 $n=X_2/X_1$; 图 2 为 t_1 、 t_2 两时刻 $(t_2 > t_1$)下的射流 X 光影像, ΔH_1 与

a. photograph of the shaped charge and target

b. experimental layout diagram

Fig. 1 Experimental setup of shaped jet penetrating finite thickness target

图 2 射流侵彻过程 X 光成像实验布局及参数计算示意图 Fig. 2 Schematic diagram of the X-ray imaging experiment layout and parameter calculation during jet penetration

Chinese Journal of Energetic Materials, Vol.XX, No.XX, XXXX (1-13)

图1 聚能射流侵彻有限厚靶板实验设置

ΔH₂分别为两时刻下底片中射流头部与标志线的距 离,由以上参数可得剩余射流的头部速度为:

$$v_{\rm r} = \frac{\Delta H_2 - \Delta H_1}{n(t_2 - t_1)} \tag{1}$$

式中, v_r 为聚能射流贯穿有限厚靶板后的剩余头部速度, $\mathbf{m} \cdot \mathbf{s}^{-1}$;n为放大比; $\Delta H_1 与 \Delta H_2$ 分别为两时刻下底片中射流头部与标志线的距离, \mathbf{mm} ; t_1 、 t_2 为X光出光时刻, μs_o

由于每发实验的脉冲X光实际出光时间不同,根据射流的运动及拉伸特性,射流穿靶后剩余射流头部 直径采用如下式进行计算

$$d_r = \sqrt{\frac{v_r t_2}{v_r t_2 - l}} \cdot \frac{d_2}{n}$$
(2)

式中,*d*₂为*t*₂时刻X光底片中获得的射流头部直径,mm; *d*_r为射流侵彻有限厚靶后剩余射流头部直径,mm;*l*为 *t*₂时刻射流头部与有限厚靶板背面的距离,mm。

1.2 实验结果与分析

1.2.1 聚能射流侵彻 X 光结果

为了分析聚能射流对有限厚靶板及靶后效应物的 侵彻过程,本研究共开展了3发实验,一发用于获取射 流成型形态,一发为聚能射流侵彻有限厚靶板实验,一 发为射流侵彻有限厚靶及靶后效应物实验,并利用脉 冲X光获取了射流侵彻过程的影像。图3为实验获得 的聚能射流穿靶后的X光影像。由图3a可以看出,当 射流侵彻单一靶板时,靶板背部的靶后碎片及出孔隆 起更为显著,且呈现向外扩展的趋势;由图3b可以看 出带有靶后效应物时,由于效应物的限制,靶后碎片及 出孔隆起幅度较小,且呈现向内收敛的趋势。

1.2.2 有限厚靶板的侵彻破坏效果

为进一步分析靶后效应物对射流侵彻有限厚靶板 出口破坏状态的影响,对有限厚靶板穿孔的出口状态 进行了观测,图4为了聚能射流对有限厚靶板的侵彻 破坏形貌。获得了有限厚靶板的侵彻入孔、出孔参数 及聚能射流贯穿靶板后的剩余头部速度及头部直径, 实验结果见表2,d_i为有限厚靶板的入孔直径,d_o为有 限厚靶板的出孔直径,v_c为聚能射流贯穿靶板后的剩 余头部速度,d_c为聚能射流贯穿靶板后的剩余头部 直径。

从图4可以看出,两种工况下聚能射流对有限厚 靶板的侵彻入孔尺寸及破坏形式基本相同;但其出孔 形貌及出孔大小存在差异,在图4中分别为了两种工 况下的靶板出孔形貌放大图,当聚能射流侵彻靶后带

a. target without medium behind

b. target with medium behind

图 3 射流侵彻不同靶体形态脉冲 X 光成像结果 Fig.3 X-ray imaging results of jet shapes of penetrating different targets

图4 有限厚靶板破坏形貌

Fig.4 Damage morphology of finite thickness target

表2 聚能射流侵彻有限厚靶板的实验结果

 Table 2
 Experimental results of jet penetrating finite thickness target

over our interest condition	d / ma ma	d / ma ma	· / · · · · · · · · · · · · · · · · · ·	d _r / mm	
experiment condition	a _i / mm	a _o / mm	V _r / m•s	А	В
without medium	24.02	22.96	6778.5	2.41	2.14
with medium	23.86	21.27	4693.2	2.18	2.02

Note: d_i is the entry hole size. d_o is the out hole size. v_r is the residual jet tip velocity. d_r is the residual jet tip diameter.

有效应物的靶板时,其出孔边缘呈现类似花瓣状的外翻,轮廓近似圆形但不规则;而当侵彻单一有限厚靶板时,其轮廓较为规则,且基本呈现圆形。

2 聚能射流侵彻有限厚靶后效参数数值模拟

2.1 模型的建立

基于实验的弹靶结构,建立了聚能射流成型及侵

彻有限厚靶板的三维有限元模型,如图5所示。药型 罩的压垮成型属于流体变形行为,且欧拉网格能够较 好地描述大变形和流动问题,故炸药、空气及药型罩均 采用欧拉网格进行描述;有限厚靶板在聚能射流冲击 下体现为塑性变形行为,故采用拉格朗日网格进行算 法,两种网格算法通过流固耦合关键字设置接触^[21]。 药型罩顶部及其共节点的炸药网格大小为0.3 mm,其 余网格自然过渡至罩底,网格大小为1.2 mm。有限厚 靶板及靶后效应物的网格划分为中心加密0.5 mm,并 自然过渡至边界,最大网格尺寸为1.5 mm。

2.2 材料参数

本研究中数值模拟计算采用的弹靶材料参数见表3与表4。其中聚能装药为JH-2炸药,药型罩材料为无氧铜,靶板为30CrMnSiNi2A,靶后效应物为氯丁橡胶。药型罩与靶板材料采用JOHNSON-COOK本

图5 聚能装药及靶板有限元模型

表3 无氧铜与30CrMnSiNi2A材料参数^[22-23]

 Table 3
 Material parameters of OFHC and 30CrMnSiNi2A^[22-23]

material	$\rho / g \cdot cm^{-3}$	G / GPa	A / MPa	<i>B</i> / MPa	n	С	т
OFHC	8.96	46	90	292	0.310	0.025	1.09
30CrMnSiNi2A	7.85	210	1269	810	0.479	0.040	1.03

Note: *ρ* is the density of the material. *G* is the shear modulus. *A* is the yield stress. *B* is the hardening constant. *C* is the strain rate constant. *n* is the hardening exponent.

表4 JH-2炸药状态方程参数^[24]

Table 4	Equation of state	parameters of	JH-2 €	explosive ^[24]

material	$\rho / g \cdot cm^{-3}$	P _{CJ} / GPa	$D / \text{m} \cdot \text{s}^{-1}$	A / MPa	B / MPa	<i>R</i> ₁	R_2	ω	$E_0 / J \cdot m^{-3}$
JH-2	1.695	29.5	8425	854.5	20.493	4.6	1.35	0.25	8.5

Note: ρ is the density of the explosive. *D* is the detonation velocity. P_{CI} is the detonation wave C-J pressure. E_0 is the specific internal energy per unit mass of the explosive. ω is the fractional part of the normal Tait equation adiabatic exponent. *A* and *B* are the pressure coefficients. R_1 and R_2 are the principal and second-ary eigenvalues, respectively.

Fig.5 Finite element model of shaped charge and target

构模型及 GRUNEISEN 状态方程来描述其动态响应行为^[21],炸药的本构模型及状态方程为 HIGH_EXPLO-SIVE_BURN 和 JWL^[24],氯丁橡胶采用 SHOCK 状态方程来进行描述。

2.3 模型有效性验证

为验证前节建立的仿真模型、参数及算法的有效 性,本研究从以下三个方面对仿真计算结果进行验证。 其一为聚能射流的头尾部速度、长度及直径等成型形 态参数;其二为聚能射流贯穿靶板后的剩余参数,包括 剩余射流的头部速度及头部直径;其三为聚能射流对 有限厚靶板的侵彻破坏参数,包括靶板侵孔的人孔及 出孔尺寸。

2.3.1 聚能射流成型参数

聚能射流成型数值模拟结果与实验结果对比如 图 6 所示。数值模拟得到的射流头部速度与尾部速度 分别为 7660 m·s⁻¹与 2076 m·s⁻¹,与实验结果误差分 别为 2.1% 与 4.3%;聚能装药起爆后 19.76 μs 与 22.68 μs 时刻,数值模拟得到的聚能射流长度及头部 直径与实验结果最大误差不超过 10%。

图6 射流成型形态对比

Fig.6 Comparison of jet formation

2.3.2 聚能射流侵彻后效参数

聚能射流侵彻有限厚靶板数值模拟结果与脉冲X 光图像对比情况如图7所示。在相同时刻,聚能射流 侵彻有限厚靶板时,仿真得到的靶后剩余射流头部速 度为6106.7 m·s⁻¹,与实验结果误差为7.3%,在聚能 装药起爆后的41.59 μs与47.4 μs时刻,数值模拟得 到的剩余射流头部直径分别为2.59 mm与2.31 mm, 与实验结果误差分别为7.4%、5.9%。聚能射流侵彻 带有橡胶后效物工况中,数值模拟得到的有限厚靶板 靶后剩余射流头部速度为5027.6 m·s⁻¹,与实验结果

b. target with medium behind

图7 射流侵彻过程对比

Fig.7 Comparison of jet penetration process

误差为 7.1%, 在起爆后的 41.65 μs 与 45.97 μs 时刻, 数值模拟得到的剩余射流头部直径分别为 2.28 mm 与 2.16 mm, 与实验结果误差分别为 6.5%、6.9%。

2.3.3 靶板破坏参数

数值模拟得到的靶板破坏形貌与实验结果对比情况如图 8 和表 5 所示。由图 8 可知,数值模拟得到的聚

Fig.8 Comparison between target plate damage morphology simulation and experiment

表5 靶板出入孔参数仿真与实验对比

Table 5 Comparison between simulation and experiment of target plate hole parameters

l'4'	d _i / mm		1.0/	d _o / mm		1.0/
conditions	experiment	simulation	ε _Γ / %ο	experiment	simulation	ε _r / %
with medium	23.86	25.13	5.3	21.27	22.16	4.2
without medium	24.02	25.13	4.6	22.96	23.24	1.2

Note: d_i is the entry hole size. d_o is the out hole size. ε_r is the error between numerical simulation and experiment.

能射流侵彻靶板入孔、出孔及破坏形貌与实验结果基本一致,聚能射流侵彻带靶后效应物的靶板情况下,数 值模拟得到的入孔及出孔大小分别为25.13 mm与 22.16 mm,与实验结果误差平均为4.5%。在聚能射 流侵彻单一有限厚靶板情况下,数值模拟得到的入孔 及出孔大小分别为25.13 mm与23.24 mm,与实验结 果误差平均为2.7%。

实验及数值模拟结果均表明,有无靶后效应物工 况下靶板的出孔形貌及尺寸出现了明显差异。其中, 带有效应物的靶板侵彻出孔较小,且其边缘出现了花 瓣状卷边;单一靶板的侵彻出孔较大,边缘无卷边。当 聚能射流侵彻单一靶板时,由于射流的侵彻作用,出孔 处的靶板材料会产生径向运动,到达拉伸极限后最终 发生断裂,而靶后存在效应物时,出孔处靶板材料的径 向运动受阻,其中一部分靶板材料仅发生了塑性变形, 并未与靶体分离,即造成了不同工况下的靶板出孔形 貌差异,图7中的X光影像及仿真过程也证实了这一 现象。图9为两种工况下聚能射流侵彻靶板的应力波 传播过程,如图9a所示,当靶后不存在效应物时,由于 空气的波阻抗较小,由射流侵彻产生的应力波传播至 靶板背部时会发生显著的反射现象,反射波强度较高, 故靶板背部的破坏程度更大,出孔也较大;如图9b所 示,当靶后存在效应物时,由于靶后效应物的波阻抗远 大于空气,侵彻应力波在传播至靶背时其透射现象较 为明显,反射现象相对较弱,则靶板背部的破坏程度相 对较小,出孔尺寸也较小;从图9中可以看出,在相同

图9 不同工况下的应力波传播过程

Fig.9 The stress wave propagation process at different situations

的压力标尺下,射流侵彻单一有限厚靶板时靶背的反 射波强度明显较强,且从表5所示的数值模拟结果可 知,射流侵彻单一有限厚靶板时的背部出孔尺寸更大。

3 聚能射流侵彻有限厚钢靶后效参数影响规 律分析

针对聚能射流对带壳装药的冲击起爆问题,将其 过程简化为聚能射流对有限厚靶板及靶后效应物的侵 彻问题,基于前述数值模拟方法,系统研究炸高及靶板 厚度对聚能射流贯穿靶板后的剩余引爆威力参量 v^d 和靶板出入孔尺寸的影响;确定聚能射流贯穿靶板后 剩余引爆威力参量 v^d在不同靶后效应物中的衰减 特性。

3.1 射流对不同厚度有限厚靶的侵彻及后效作用

为了探究靶板厚度对射流侵彻及后效作用的影响,开展了50mm聚能装药射流对不同厚度靶板侵彻数 值模拟,靶板厚度分别为40,60,80mm及100mm,炸 高统一设置为3D₀,靶板材料采用30CrMnSiNi2A。

图 10为聚能射流侵彻不同厚度靶板的剩余速度 及穿靶后剩余射流头部直径随靶厚的变化曲线,如图 10所示,随着靶厚的增大,射流动能消耗加剧,射流头 部速度随着靶厚的增大而逐渐减小;在剩余射流头部 直径方面,计算结果显示随着靶厚的增大剩余射流头 部直径也随之增大。由聚能射流的虚拟源点假设可 知,侵彻贯穿固定厚度靶板所消耗的射流长度为定值, 若靶板厚度增大使得被消耗射流的占比增大,其剩余 射流头部直径就越大。同时,靶板加厚会导致剩余射 流的拉伸时间变长,会使其剩余头部直径越小,因此, 以上两因素对于剩余射流头部直径的影响为竞争关 系,无法直接定性得出结论。由本文研究结果可知,剩

图10 剩余速度及头部直径随靶板厚度变化曲线

Fig.10 Curve of residual velocity and tip diameter changing with target plate thickness

CHINESE JOURNAL OF ENERGETIC MATERIALS

余射流头部直径随着靶板厚度的增大而增大,说明由 消耗射流长度增加而引起的剩余射流头部直径增大的 因素占据主导,这与前期理论模型计算结果^[25-26] 一致。

图 11 为不同盖板厚度下聚能射流贯穿盖板后的 v²d分布值及拟合曲线,从图 11 可以看出,随着盖板厚 度的增大,聚能射流贯穿靶板后的 v²d值在逐渐减小, 随着靶板厚度的增大,聚能射流动能被更多的消耗,进 而导致其对带壳装药的引爆能力逐渐下降。由拟合曲 线可知,靶后引爆威力 v²d随靶厚呈线性变化,拟合曲 线的表达式为 y=-0.754x+125,即靶板厚度每增加 10 mm,靶后引爆威力减小7540 m³·s⁻²。

图 12 为靶板出孔尺寸随靶板厚度的变化曲线,四 种厚度的靶板入孔尺寸基本一致,而出孔的尺寸出现 了差异,随着靶厚的增大,靶板的出孔直径在逐渐减 小,由拟合曲线可知出孔大小随靶厚呈现线性减小的 趋势,拟合曲线的表达式为 y=-0.18x+28.8,即靶板厚 度每增大10 mm,靶板的出孔尺寸减小1.8 mm。

3.2 炸高对有限厚靶板侵彻及后效作用的影响

为了探究炸高对射流侵彻及后效作用的影响,开 展了聚能装药在不同炸高下的有限厚靶板侵彻数值模

图11 v²d随靶板厚度变化曲线

Fig.11 Curve of $v^2 d$ with target plate thickness

图 12 出入孔尺寸随靶板厚度变化曲线 Fig.12 Curve of hole size changing with target plate thickness

拟,共设置1D₀、3D₀、8D₀及12D₀四种炸高,靶板材料 及直径均与前节开展的数值模拟计算相同根据 Walters等^[27]的研究结果,通过射流的虚拟原点假 设^[25]得出,50 mm聚能装药射流拉断时炸高为 14D₀,故本文在进行数值模拟计算时的炸高设置不 超过14D₀。

图 13 为射流侵彻靶板的出入孔尺寸随炸高的变 化曲线,靶板的入孔与出孔尺寸均随着炸高的增大而 减小。炸高增大导致射流的拉伸效应加剧,炸高越大, 着靶时刻的射流头部直径越小,其入孔直径也越小;根 据虚拟源点理论可知,贯穿固定厚度靶板所消耗的射 流长度为定值,炸高越大,在相同侵彻深度下的射流头 部直径越小,其出孔直径也越小。由图 13 可知,出入 孔尺寸的变化规律呈现非线性,这一现象可通过其他 学者的研究结果加以解释,聚能射流在某一侵彻深度 下产生的孔径 d,可表示为^[28]:

 $d_{\rm f} = d_{\rm r} \cdot f(P, \sigma, \rho_{\rm T}, \rho_{\rm j}) \tag{3}$

式中, d_i 为射流侵彻孔径,mm; d_i 为着靶时刻的射流直径,mm;P为侵彻深度,mm; σ 为靶体阻力,GPa; ρ_T , ρ_j 分别为靶体与射流材料密度,g·cm⁻³。

除 d_i外其余参量均为常数, P取 0 时 d_i为入孔大小, P取靶厚时 d_i为出孔大小。以入孔为例对该问题进行论证, 当炸高不同时, 着靶时刻射流直径 d_i也随之不同, 拉伸作用带来的直径缩小可由下式表示^[5]:

$$\frac{d_r(t+\Delta t)}{d_r(t)} = \sqrt{\frac{t}{t+\Delta t}}$$
(4)

式中, $d_r(t)$ 、 $d_r(t+\Delta t)$ 为以虚拟源为起点运动至t及 $t+\Delta t$ 时刻的射流直径,mm。

经变换得到着靶时刻射流直径随炸高的变化关系 并绘制曲线,如图13蓝色虚线所示,结合式(3)可知, 射流侵彻靶板入孔随炸高的增大而呈现非线性减小的 规律,同理可得,靶板出孔规律亦如此。

Fig.13 Curve of hole size with standoff

图 14 为不同炸高下的剩余射流速度及头部直径 随炸高的变化曲线,由图 14 可知,整体而言,剩余射流 速度随炸高的增大而增大,且呈现非线性的变化规律。 当炸高大于 3 D₀时,剩余射流头部速度的上升趋势逐 渐缓慢。对于图 14 中出现剩余速度随炸高非线性变 化的现象,可通过理论计算的方法解释其机理,基于本 文的实验数据可得出不同炸高下着靶时刻的射流长 度为:

$$l(H) = \left(\frac{H}{D_0} - 3\right) \cdot D_0 \frac{(v_0 - v_j)}{v_0} + l_3$$
(5)

式中,*H*为炸高,mm;l(H)为炸高取H时的着靶时刻 射流长度,mm; v_0, v_j 分别为射流头尾部速度,m·s⁻¹; l_3 为炸高取3 D_0 时的着靶时刻射流长度,mm。

由聚能射流的速度线性分布特性可得:

$$v_{\rm r}(H/D_{\rm 0}) = v_{\rm 0} - \frac{l_{\rm p}(v_{\rm 0} - v_{\rm j})}{l(H/D_{\rm 0})}$$
(6)

式中, $v_r(H)$ 炸高取日时的剩余头部速度, $\mathbf{m} \cdot \mathbf{s}^{-1}$; l_p 为贯 穿靶板消耗的射流长度(为定值), \mathbf{mm} 。

根据上式绘制了剩余速度随炸高的变化曲线,如 图14中虚线所示。随着炸高的增大,剩余速度呈现斜 率逐渐变小的非线性增长趋势,与数值模拟结果一致。

图 15 为不同靶板厚度剩余射流引爆威力参数 v²d 随炸高的变化曲线,靶板厚度不变时,聚能射流贯穿靶 板后的 v²d值随炸高的增大呈现先增大后减小的变化 趋势。剩余引爆参量 v²d的大小由剩余速度与头部直 径共同决定,其对炸高的导数为 2vv²d + v²d²。当炸 高较低时,虽然头部直径在逐渐减小,但由于剩余速度 的增长速率较高,其 v²d值也呈现迅速上升的趋势;当 炸高逐渐增大至 4~6 D₀时,头部速度的提升速率渐缓 并趋向于 0,此时 v²d对炸高的导数可近似为 v²d²,由 图 14 可得 d² < 0,导致此时的 v²d变化为关于炸高的

图 14 剩余速度和头部直径随炸高的变化曲线(仿真与理论) **Fig.14** Curve of residual velocity and tip diameter changing with standoff (simulation and theory)

Fig.15 Curve of residual v^2d changing with standoff

单调递减函数。目根据数值模拟计算结果可知,剩余 射流 vd随炸高的变化曲线存在驻点,在该处 vd值取 得最大,驻点分布于6~9 D。炸高处。值得注意的是, 不同靶厚下的驻点位置并不固定,出现驻点的炸高值 随着靶板厚度的增大而增大,靶厚为40 mm、60 mm、 80 mm 及 100 mm 工况下的驻点位置分别出现于 6.5D₀、7D₀、8D₀及9D₀炸高处。在工程实际中可根据 目标的壁厚灵活选取聚能装药的炸高,以达到聚能射 流引爆威力的最大化。

3.3 剩余射流参量在不同靶后效应物中的衰减特性

为了研究炸药密度对引爆威力衰减特性的影响, 本研究选取了六种不同密度的炸药开展数值模拟计 算,分别为HTPB、RDX/HTPB(85%/15%)、RDX/HT-PB(88%/12%)、RDX/HTPB(90%/10%)、RDX及AP, 材料参数均来自于文献[29-30]。靶板厚度均为 40 mm,材料为30CrMnSiNi2A,炸高均设置为3D₀。

图 16 为射流直径 d 随时间的变化曲线,随着靶后 效应物密度的增大,剩余射流头部速度的衰减速率逐 渐增大。图17为剩余射流头部直径衰减曲线,随着靶 后效应物密度的增大,剩余射流头部直径的衰减速率 在逐渐减小,由于密度较大的靶后效应物对射流的消 耗能力更强,则在相同时刻下,剩余射流的头部速度更 小,根据射流速度与直径的相关性可知,其头部直径更 大,则会减缓其头部直径的衰减。图18为剩余射流在 不同密度靶后效应物中的引爆威力参数 v²d衰减曲 线,从 v²d时程曲线图中仅可直观的得出密度最小的 靶后效应物中剩余射流引爆参量 vd衰减速度最快。

为了更深入地研究射流参数在不同密度靶后效应 物中的变化差异,以靶后效应物密度 ρ 为自变量,绘制 了每一时刻下的剩余射流在不同密度靶后效应物中的 头部速度 vi、头部直径 d 及引爆威力参数 v²d的变化曲 线。其中,图19为头部速度 vi 随效应物密度的变化曲

图 16 剩余射流头部速度随时间的变化曲线 Fig.16 Curve of residual tip velocity changing with time

剩余射流头部直径随时间变化曲线 图 17

45 50 55 t/μs 60 65

剩余射流引爆威力参量 v²d随时间变化曲线 图 18 **Fig.18** Curve of residual jet $v^2 d$ changing with time

剩余头部速度随靶后效应物密度变化曲线 图 19 Fig.19 Curve of residual tip velocity changing with target after-effect density

线,随着靶后效应物密度的增大,剩余射流头部速度的 衰减速率逐渐增大。图 20 为头部直径 d 随效应物密 度的变化曲线,随着靶后效应物密度的增大,剩余射流 头部直径的衰减速率在逐渐减小。图 21 为不同时刻 下射流引爆威力参数 vd随靶后效应物密度的变化曲 线,由图21可知,射流引爆参量 v²d随着效应物密度的 增大呈现先增后减的趋势,图中框选的数据点为每一 时刻下 v²d值取得最大时的靶后效应物密度。48 µs 时刻下, ρ =1.55 g·cm⁻³的靶后效应物中的 v^2 d取得最 大;51-60 μ s 时刻下, ρ =1.65 g·cm⁻³的靶后效应物中 的 v²d取得最大;在63~66 μs 时刻下, ρ=1.82 g·cm⁻³ 的靶后效应物中的 vd取得最大。基于本节开展的数 值模拟计算结果可知:在常见的炸药密度范围内,随着 靶后效应物密度的增大,引爆威力参数 vd的衰减速 率并不是单调的,其衰减速率呈现先减小后增大的趋 势;在相同的时刻下,存在一个关于靶后效应物密度的驻 点,其v²d取得最大值,驻点分布于ρ=1.6-1.8 g·cm⁻³之 间,且随着侵彻时间的增加,其驻点位置呈现逐渐右移 的趋势。

图 20 剩余头部直径随靶后效应物密度变化曲线

图 21 剩余引爆威力参量 v²d随靶后效应物密度变化曲线 Fig. 21 Curve of residual initiation parameter v²d changing with after-target effect material density

4 结论

本文开展了 50 mm 聚能射流源成型 X 光及侵彻 有限厚 30CrMnSiNi2A 靶板实验,获得了剩余射流的 形态及头部参数。在此基础上,建立了相应的数值模 拟模型,结合实验结果验证了模型的有效性,系统分析 了有限厚靶板厚度、炸高及靶后效应物密度对剩余射 流引爆威力参数的影响,主要结论如下:

(1)靶后效应物的存在会对有限厚靶板的侵彻出 孔形貌造成差异。具体而言,带有靶后效应物时,出孔 具有花瓣状金属残余,孔洞形状不规则且孔径较小;无 靶后效应物时,出孔无金属残余,孔洞形状规则且孔径 较大。

(2)射流侵彻靶板出孔及靶后引爆威力 v²d均随 靶板厚度的增大而线性减小。靶板厚度每增加 20 mm,靶板出孔减小 3.6 mm,靶后引爆威力减小 15.1 10³m³·s⁻²。

(3)在射流保持连续的炸高范围内,射流侵彻靶 板的出孔及入孔均随着炸高的增大而非线性减小;后 效引爆威力参数 v²d随炸高的增大而先增后减,存在 一个最有利炸高使得后效引爆威力参数 v²d取得最大 值,靶板越厚最有利炸高越大。

(4)在常见的炸药密度范围内,随着靶后效应物密 度ρ的增大,同一时刻下的引爆威力参数 v²d呈现先增 大后减小的趋势; v²d最大值分布于ρ=1.6~1.8 g·cm⁻³ 之间,且驻点位置随侵彻时间增大而右移。

参考文献:

- BROWN J, FINCH D. The shaped charge jet attack of confined and unconfined sheet explosive at normal incidence[C]// 11th International Symposium on Ballistics, Brussels, Belgium, 1989; 211-232.
- [2] SVIRSKY O V, KOVALEV N P, KLOPOV B A, et al. The shaped charge jet interaction with finite thickness targets[J]. International Journal of Impact Engineering, 2001, 26 (1-10): 735-744.
- [3] CHEN S, JIA X, HUANG Z, et al. Initiation of a confined finite -thickness explosive under the impact of shaped charge jet[J]. *Propellants, Explosives, Pyrotechnics,* 2022, 47 (4) : e202100315.
- [4] CHEN S, JIA X, XIA M, et al. Critical initiation threshold of covered finite thickness explosive under impact of shaped charge jet[J]. *Propellants, Explosives, Pyrotechnics*, 2021, 46 (10): 1572–1580.
- [5] 方一舟,张先锋,熊玮,等.考虑形状分布特性的聚能射流侵彻 作用规律研究[J].北京理工大学学报自然版,2023,43(10): 1047-1058.

FANG Yi-zhou, ZHANG Xian-feng, XIONG Wei, et al. Study on penetration law of shaped charge jet considering shape distribution characteristics [J]. *Transactions of Beijing institute of Technology*, 2023, 43(10): 1047–1058.

- [6] HELD M. Initiation criteria of high explosives at different projectile or jet densities [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5): 235-237.
- HELD M. Critical area for the initiation of high explosive charges [M]//Shock Waves in Condensed Matter 1983. Elsevier, 1984: 555-557.
- [8] 张先锋,赵有守,陈惠武,等.聚能射流引爆带壳炸药数值模拟研究[J].弹箭与制导学报,2005,(S9):165-167. ZHANG Xian-feng, ZHAO You-shou, CHEN Hui-wu. Numerical simulation investigation of shaped charge jet initiating the shelled explosive[J]. *Journal of Projectiles, Rockets, Missiles and Guidance*, 2005, (S9): 165-167.
- [9] 张先锋,陈惠武,赵有守.EFP对有限厚靶板侵彻过程及后效研究[J].爆炸与冲击,2006,26(4):323-327.
 ZHANG Xian-feng, CHEN Hui-wu, ZHAO You-shou. Investigation of process and aftereffect of EFP penetration into target of finite thickness[J]. *Explosion And Shock Waves*, 2006, 26 (4): 323-327.
- [10] CHICK M C, BUSSEL T, FREY R B, et al. Initiation of munitions by shaped charge jets[C]//Proceedings of the 9th International Symposium on Ballistics. ENGLAND, 1986: 421–430.
- [11] Chick M C, Bussell T J. The effect of minimum detonation diameter on the mechanism of jet initiation of bare explosives
 [J]. Journal of applied physics, 1988, 63(9): 4761-4763.
- [12] CHICK M C, WOLFSON M G, Learmonth L A. A calibrated test for the assessment of the sensitivity of explosives to shaped charge jets [R]. MATERIALS RESEARCH LABS ASCOT VALE (AUSTRALIA), 1986.
- [13] CHICK M C, HATT D J. Metal jet initiation of bare and covered explosives; summary of the mechanism, empirical model and Some applications[R]. MATERIALS RESEARCH LABS AS-COT VALE(AUSTRALIA), 1981.
- [14] MADER C L, PIMBLEY G H. Jet initiation of explosives. [PBX 9502 and PBX 9404] [R]. Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 1981.
- [15] MADER C L, PIMBLEY G H. Jet initiation and penetration of explosives [J]. Journal of Energetic Materials, 1983, 1 (1): 3-44.
- [16] ARNOLD W, HARTMANN T, ROTTENKOLBER E. Filling the gap between the initiation behavior of shaped charge jets and fragments [C]//Proceedings of the 2017 Insensitive Munitions & Energetic Materials Technology Symposium, Portland, USA, 2018: 23-26.
- [17] ARNOLD W, ROTTENKOLBER E. High explosive initiation behavior by shaped charge jet impacts[J]. Procedia Engineering, 2013, 58: 184-193.
- [18] ARNOLD W, ROTTENKOLBER E. Significant charge parameters influencing the shaped charge jet initiation [C]//Proceedings of the 2013 Insensitive Munitions & Energetic Materials Technology Symposium San Diego, California, USA. 1987:

27-29.

- [19] Selected Hugoniots [R]. Los Alamos Scientific Laboratory, LA-4167-MS, 1 May 1969.
- [20] 宋浦,杨凯,梁安定,等.国内外TNT炸药的JWL状态方程及其 能量释放差异分析[J].火炸药学报,2013,36(2):42-45.
 SONG Pu, YANG Kai, LIANG An-ding, et al. Difference analysis on JWL-EOS and energy release of different TNT charge
 [J]. Chinese Journal of Explosives & Propellants, 2013, 36 (2):42-45.
- [21] 王钰婷,黄正祥,贾鑫,等.椭圆形截面聚能装药射流成型及侵 彻特性[J].含能材料,2021,29(2):96-106.
 WANG Yu-ting, HUANG Zheng-xiang, JIA Xin, et al. Jet Formation and Penetration Characteristics of Shaped Charge with Elliptical Cross-section[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(2):96-106.
- [22] 李磊.不同硬度 30CrMnSiNi2A 钢动态本构与损伤参数研究
 [D].南京;南京理工大学, 2017.
 LI Lei. Study on dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardnesses [D]. Nanjing: NanjingUniversity of Science and Technology, 2017.
- [23] JOHNSON G R. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics, The Hague, Netherlands, 1983.
- [24] 张朝平,张先锋,谈梦婷,等.聚能杆式射流侵彻混凝土和岩石 靶体实验与数值模拟[J].含能材料,2023,31(8):773-785. ZHANG Chao-ping, ZHANG Xian-feng, TAN Meng-ting, et al. Experimental and numerical simulation of shaped charge jet penetrating concrete and rock targets[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2023, 31(8):773-785.
- [25] ALLISON F E, VITALI R. A new method of computing penetration variables for shaped-charge jets[R]. ARMY BALLISTIC RE-SEARCH LAB ABERDEEN PROVING GROUND MD, 1963.
- [26] SCHWARTZ W. Modified SDM model for the calculation of shaped charge hole profiles[J]. *Propellants*, *explosives*, *pyrotechnics*, 1994, 19(4): 192–201.
- [27] WALTERS W P, SUMMERS R L. The velocity difference between particulated shaped charge jet particles for face-centered-cubic liner materials [R]. U. S. Army Research Laboratory Aberdeen Proving Ground MD, ARL-TR-8, November 1992b.
- [28] 王静,王成,宁建国.聚能射流侵彻的理论模型与孔径计算
 [J].工程力学,2009,26(4):21-26.
 WANG Jing, WANG Cheng, NING Jian-guo. Theoretical model for shaped charge jets penetration and cavity radius calculation[J]. *Engineering Mechanics*, 2009, 26(4):21-26.
- [29] BAUDIN G, PETITPAS F, SAUREL R. Thermal non-equilibrium modelling of the detonation waves in highly heterogeneous condensed HE: a multiphase approach for metalized high explosives [C]//Proc. 14th Int. Detonation Symp. 2010.
- [30] GUIRGUIS R, BERNECKER R. Relation between sensitivity, Detonability, and Non-ideal Behavior[C]//Proceedings of the 11st International Detonation Snowmass, CA, 1998.

Characteristics of after-effect parameters of Shaped Charge Jet Penetrating Finite Thickness Steel Target

FANG Yi-zhou, ZHANG Xian-feng, XIONG Wei, LIU Chuang, TAN Meng-ting

(School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: To study the characteristics of after-effect parameters of shaped charge jet penetrating finite thickness steel target, the experiments on small shaped charge jet formation and penetration on finite thickness plate with after-effect target were carried out. The numerical simulation on the process of shaped charge jet penetrating finite thickness target plate was carried out by AN-SYS/LS-DYNA finite software. The influence of target plate thickness, standoff and after-effect material density on the after-effect parameters of shaped charge jet penetration was analyzed, including the residual jet tip diameter d, tip velocity v and after-effect initiation ability $v^2 d$. The results show that with the increase of target thickness, the after-effect initiation ability $v^2 d$ shows a linear attenuation trend, and around 16% of the initial initiation parameter is lost for every 20 mm increase in thickness. In the range of standoff that the jet keeps continuous, with the increase of standoff, the after-effect initiation ability v^2d first increases and then decreases, and its stagnation point appears at the standoff of 8 times the shaped charge diameter. In the range of common explosive density, with the increase of after-effect material density ρ , the attenuation rate of after-effect initiation ability v^2d first decreases and then increases. At the same time, there is a stagnation point in the $v^2 d$ - ρ curve. The peak value of $v^2 d$ is distributed between $\rho = 1.6 - 1.8 \text{ g} \cdot \text{cm}^{-3}$, and the stagnation point position moves to the right with the increase of penetration time. Key words: shaped charge jet; finite thickness target; shock initiation; after-effect initiation ability; after-target object CLC number: TI55:O385 Document code: A DOI: 10.11943/CJEM2024107

Grant support: National Natural Science Foundation of China (Nos. 12141202, 12002170)

(责编:高毅)

图文摘要:

The experiments of jet formation and penetration on finite thickness steel target were carried out through pulsed X-ray photography. The ANSYS/LS-DYNA software was used to carry out the numerical simulation of shaped charge jet penetrating finite thickness target under different target thicknesses, standoff and density of after-target object. The effects of target thickness, standoff and density of after-target object on the after-effect parameters were analyzed.