文章编号:1006-9941(2024)08-0855-09

模糊综合评价模型在高能硝胺发射药改性评价中的应用研究

郭志罡,李曼曼,王 锋,于慧芳,魏 伦,王琼林 (西安近代化学研究所,陕西西安 710065)

摘 要: 为研究模糊综合评价模型在高能硝胺发射药改性评价中的应用,采用包覆工艺,分别选取三氨基三硝基苯(TATB)和聚酯 (NA)作为包覆工艺中的降燃速材料,制备了TATB包覆发射药和NA包覆发射药,对比了包覆和未包覆发射药的堆积密度、局部燃速、爆热、燃烧渐增性以及内弹道性能;基于此实验结果,采用层次分析法,评价了TATB和NA对发射药基本性质和燃烧性能的影响 程度。研究建立了发射药基本性质和发射药燃烧性能间的模糊评价方法;发现面向发射药燃烧性能,局部燃速的影响权重最大,为 0.82;爆热的影响权重次之,为 0.11;堆积密度的影响权重为 0.07。在堆积密度差异较小的情况下,由于 NA 包覆发射药的降燃速效 果明显强于 TATB 包覆发射药,NA 包覆发射药的能量损失虽然较 TATB 包覆发射药更大,NA 包覆发射药的燃烧性能优于 TATB 包 覆发射药,且二者明显强于未包覆的空白发射药。

关键词:模糊综合评价模型;高能硝胺发射药;包覆;三氨基三硝基苯(TATB);聚酯(NA) **中图分类号:** TJ55;TQ562 **文献标志码:** A

DOI:10.11943/CJEM2024069

0 引言

为弹丸发射提供能源的发射药是决定武器威力及 弹道稳定性的核心^[1]。在众多发射药中,高能硝胺发 射药属于能量高、密度大的新型发射药^[2],倍受关注。 为充分挖掘高能硝胺发射药的应用潜力,研究人员需 进一步调控燃烧渐增性^[3]和低温性能^[4]等特性。目前 在发射药性能调控研究中,基于燃速调控的包覆技 术^[5],比燃面调控的几何药型优化^[6]的工艺可操作性 强,改善效果好,利于应用推广。

包覆工艺的基础研究中,降燃速材料的选取一直 是热点,它是影响发射药性能变化的重要因素。常见 降燃速材料包括樟脑^[7]、邻苯二甲酸二丁酯(DBP)^[8] 等小分子材料,以及三氨基三硝基苯(TATB)^[3]、聚酯 (NA)^[9]等高分子材料。小分子材料迁移性问题严重, 与之相比,高分子材料具有良好的抗迁移性能,据此魏

收稿日期:2024-02-27;修回日期:2024-04-01 网络出版日期:2024-05-14 作者简介:郭志罡(1995-),男,助理研究员,主要从事发射装药应 用技术研究。e-mail:940897281@qq.com 通信联系人:于慧芳(1982-),女,副研究员,主要从事发射装药应

用技术研究。e-mail:50793647@qq.com

伦等^[10]应用一种新型聚酯提升了发射药长贮稳定性。 经降燃速材料包覆处理,发射药的基本性质会发生变 化,如发射药的氧平衡、火药力等能量特性^[8]、发射药 堆积密度^[11]与表面包覆层的局部燃速等;包覆层的燃 速变化与降燃速材料的种类和组分含量密切相关^[3]。 合理调控发射药的基本性质,会一定程度改善发射药 燃烧渐增性和内弹道性能,通过密闭爆发器^[11]和内弹 道实验测试^[12]已开展了相关研究。

整体来看,包覆工艺中可选择的降燃速材料种类 已趋于多样化,影响因素的分析方法也较成熟。包覆 发射药配方设计是多目标决策的复杂问题。然而,现 有研究尚未形成系统的定量评价方法,仅为有限实验 工况点的对比,对不同影响因素评价分散,多为经验 性/半经验性的定性结论;且不同学者的分析侧重点存 在不确定性,难以互相借鉴。模糊综合评价模型可应 用于多目标问题,可提供方案重要程度的排序分 析^[13-14],实现多因素影响作用的量化加权。付强等^[13] 采用模糊综合评价模型讨论发射药生产中造成事故发 生的关键原因,工作人员、生产工艺、原料物质、机械设 备和作业环境所占的权重依次降低。目前,在模糊综 合评价模型的应用中,权重计算的主观性成分较大,相 关数据与实际规律的关联性弱,很难直接指导包覆发

引用本文:郭志罡,李曼曼,王锋,等. 模糊综合评价模型在高能硝胺发射药改性评价中的应用研究[J]. 含能材料,2024,32(8):855-863. GUO Zhi-gang, LI Man-man, WANG Feng, et al. Fuzzy Comprehensive Evaluation Model Applying in the Modification Evaluation of High Energy Nitramine Gun Propellant[J]. *Chinese Journal of Energetic Materials (Hanneng Cailiao)*,2024,32(8):855-863.

CHINESE JOURNAL OF ENERGETIC MATERIALS

射药改性评价。

因此,为验证模糊综合评价模型在高能硝胺发射 药改性评价中的可行性,本研究选取了空白发射药、三 氨基三硝基苯(TATB)包覆发射药和聚酯(NA)包覆发 射药,通过实验测试对比了3种发射药的堆积密度、 局部燃速、爆热、燃烧渐增性以及内弹道性能;在此 基础上,采用层次分析法,构建了发射药基本性质和 发射药燃烧性能间的模糊评价方法,量化了不同因 素的关联性,为未来高能硝胺包覆发射药的设计提 供理论依据。在模糊评价过程中,通过实验数据和 因素判断矩阵的映射,减少了重要程度评价的不确 定性。

1 实验部分

1.1 原料与设备

空白发射药,主要含能成分为 NC、NG、RDX 和 NQ,药形为7孔粒状,该发射药经吸收、压延、胶化、压 伸成型、切粒、干燥等三基药生产工艺制备,由西安近 代化学研究所提供。吸收药片,以 NC 和 NG 为主要 含能成分,经吸收、驱水及压延等工序制得,由西安近 代化学研究所提供。三氨基三硝基苯(TATB)^[3],属于 一种低能单质炸药,常温呈固体粉末,由西安近代化学 研究所提供。聚酯(NA)^[10],一种惰性高分子材料,常 温呈浅黄色固态,由西安近代化学研究所提供。

1.2 包覆发射药样品制备

分别选择降燃速材料TATB和NA,和溶剂、吸收 药片按一定比例配置2种包覆液,用于制备2种包覆 发射药样品。其中TATB加入百分比是NA加入百分 比的4倍。在包覆发射药制备过程中,称量空白发射 药置于转鼓式包覆机中,在转鼓维持运转状态时,分别 将TATB和NA包覆液均匀喷涂在空白发射药表面,通 入热风驱除发射药中的溶剂,制备得到TATB包覆发 射药和NA包覆发射药。所得包覆发射药样品具有较 好的包覆均匀性。

1.3 发射药样品表征

测试空白发射药、TATB包覆发射药和NA包覆发 射药的基本性能以及静态/动态燃烧性能,具体为:

(1)堆积密度测试:按照GJB 770B-2005方法402.1,基于量筒和天平测试3种发射药样品的堆积密度。

(2)爆热测试:按照GJB 770B-2005方法701.2, 基于恒温式氧弹热量计测试3种发射药样品的爆热。 (3)局部燃速测试:对应3种发射药样品的材质组分,制备外径为6mm的基础高能硝胺药药条TR-0、添加TATB的高能硝胺药药条TR-1和添加NA的高能硝 胺药药条TR-2。通过燃速仪进行3种药条的常规恒压 燃速测试,通过药条长度和燃尽时间的比值,获得不同 压力下的局部燃速变化。

(4)静态燃烧性能测试:参考 GJB 770B-2005 方 法 703.1,基于密闭爆发器实验进行 3 种发射药样品的 静态燃烧性能测试。实验密闭爆发器的药室容积为 100 cm³;装填密度取 0.2 g·cm⁻³;样品初始处于常温 状态。点火药为 2*硝化棉,质量 1.1 g,点火压力为 10 MPa。由密闭爆发器实验可获得燃烧压力 *p* 随燃 烧时间 *t* 的响应,进而计算活度 *L* 随相对压力 *B* 的变 化^[11];活度 *L* 的单位为 MPa⁻¹·s⁻¹,相对压力 *B* 是无量纲 数。最终,按照式(1)计算不同样品的燃烧渐增性因 子 $P_{L}^{[11]}$:

$$P_{\rm r} = L_{\rm s}B_{\rm s}/(L_{0.1\rm B} + L_{0.3\rm B})$$
(1)

式中, L_s 对应着发射药燃烧分裂点的活度, B_s 对应着发射药燃烧分裂点相对压力, $L_{0.18}$ 对应B=0.1的活度; $L_{0.38}$ 是B=0.3的活度。 P_r 越大,表明发射药的燃烧渐增性越强,发射药的静态燃烧性能更好。

(5)內弾道性能测试:选用12.7 mm口径试验用 机枪测试3种发射药样品的内弹道性能;弹头、弹壳均 采用12.7 mm制式武器器材,根据GJB349.5-87 所述 的铜柱测压法,获得最大膛压;根据GJB349.4-87 所 述的恒磁靶测速法,获得弹丸初速。

1.4 结果与讨论

1.4.1 密度的对比分析

空白发射药、TATB包覆发射药、NA包覆发射药 的堆积密度测试结果如表1所示。由表1可看出,3种 发射药的堆积密度的宏观变化不大,不同样品的堆积 密度差异可以忽略。

1.4.2 爆热的对比分析

不同发射药样品的爆热测试结果见表1。与空白 发射药相比,TATB包覆发射药的爆热仅降低2.5%,变

表1 不同发射药样品的堆积密度与爆热

Table 1Results of bulk density and explosion heat for differ-ent propellant samples

sample	bulk density ∕g∙cm ⁻³	explosion heat / J•g ⁻¹
blank propellant	0.95	4806
propellant coated with TATB	0.95	4688
propellant coated with NA	0.96	4516

含能材料

化缓慢;而NA包覆发射药爆热相对降低6%,变化明显。因此,降燃速材料的加入对发射药的能量水平存在不利影响,NA包覆引起的发射药能量损失大于TATB包覆。这是由于NA属于不含能的惰性高分子材料,而TATB属于低能单质炸药;自身含能的TATB加入,对包覆发射药的能量水平也存在贡献,故NA包覆发射药的爆热低于TATB包覆发射药。然而,TATB自身能量水平低于高能硝胺发射药,故TATB包覆发射药的爆热仍低于空白发射药。

1.4.3 局部燃速的对比

恒压燃速测试的结果如图 1 所示,不同药条的燃速(*u*)-压力(*p*)响应均满足 *u*=*u*₁*p*^o公式形式,相关系数 *R*²>0.99。在空白发射药的基础上,TATB 和 NA 的添 加仅引起发射药的压力指数 *n* 的波动,且能明显减小燃速系数 *u*₁,进而影响不同压力下的燃速。从 *u*₁来看,与添加 TATB 的药条 TR-1 相比,添加 NA 的药条 TR-2 的燃速更低,NA 的降燃速影响明显大于 TATB。这与降燃速材料的能量水平有关,含能 TATB 的燃烧反应速率实际大于不含能的 NA。

Fig.1 Results of burning rate test under constant pressure for three propellant strips

1.4.4 静态燃烧性能的对比

3种发射药的静态燃烧性能的测试结果如图2所示,TATB包覆发射药与NA包覆发射药的燃烧特性相似。由图2a可以看出,与空白发射药相比,包覆 发射药的燃烧时间大约延长了0.9 ms,压力p急速 上升的起点延迟。由图2b可以看出,B<0.1,包覆发 射药与空白发射药的活度L存在显著差异;随着B增 大,包覆发射药与空白发射药的L差值降低。这与 包覆层的燃烧进程有关。B<0.1属于发射药燃烧早 期,包覆发射药的包覆层还未燃尽;含降燃速材料的 包覆层和空白高能硝胺药的燃烧速率间存在差异, 故此时图2b中包覆发射药的L值低于空白发射药;

图 2 三种发射药样品的静态燃烧性能对比 Fig. 2 Comparison of static burning characteristic between three propellant samples

而随着 B 提高,包覆发射药的包覆层逐渐燃尽,不同 发射药样品的燃烧反应都趋于高能硝胺发射药的燃烧。故图 2b 中不同样品的 L-B 曲线逐渐趋于重合; 在图 2a 中随着 t 增大,不同样品的 p-t 曲线逐渐趋于 平行。

由图 2b可获得如表 2 所示的燃烧渐增性对比。 从表 2 的 P,来看,与空白发射药相比,包覆发射药能 明显改善燃烧渐增性,P,的相对增长为 80%。TATB 包覆发射药和 NA 包覆发射药的 P,差异主要与 L_{0.3B} 和 B_s有关,反映了不同包覆发射药燃烧过程中局部 燃速、燃烧面积和燃烧一致性的变化。NA 包覆发 射药的 P,略高于 TATB 包覆发射药,二者间存在相 似的燃烧渐增性,图 2b 中包覆发射药的 L-B 曲线整 体差异不大。然而,在不同包覆发射药的制备过程 中,NA 的加入量低于 TATB。整体来看,与空白发 射药相比,两种包覆发射药都能明显改善燃烧渐增 性;但在相近的 P,增长下,采用 NA 对发射药进行包 覆处理,有利于减少降燃速材料的用量以控制成 本,故 NA 包覆发射药的优势还比 TATB 包覆发射药 略大。

含能材料

表2 三种发射药样品的燃烧渐增性对比

Table 2 Comparison of burning progressivity between three propellant samples							
sample	$L_{0.1B} / MPa^{-1} \cdot s^{-1}$	$L_{0.3B} / MPa^{-1} \cdot s^{-1}$	$L_{\rm s}$ / MPa ⁻¹ · s ⁻¹	B _s	P _r		
blank propellant	5.46	3.82	3.83	0.36	0.15		
propellant coated with TATB	3.33	3.43	3.54	0.51	0.27		
propellant coated with NA	3.48	3.15	3.59	0.57	0.31		

Note: $L_{0.1B}$ is the vivacity as the relative pressure (B) is 0.1; $L_{0.3B}$ is the vivacity as B is 0.3; L_s is the vivacity at the splitting point of combustion stage; B_s is the relative pressure at the splitting point of combustion stage; P_r is the burning progressivity factor

1.4.5 内弹道性能的对比分析

3种发射药样品的内弹道特性如图 3 所示。由图 3 可以看出,经过包覆处理的发射药样品均表现出良好的内弹道性能,常温下($T=20 \circ$)的弹口初速 V_0 增长 可超过 40 m·s⁻¹(图 3b)而最大膛压 p_m 增长不超过 24 MPa(图 3a)。另一方面,TATB包覆发射药的 p_m 和 V_0 不再与 T 成正相关,出现负温度系数的效果;在 $T=50 \circ$ 的高温工况下,与空白发射药相比,TATB包 覆发射药的 $p_m减少$,且不同温度点间的压差降低。对 于 NA 包覆发射药,低温和高温下的 p_m 和空白发射药 相近,但对应 V_0 能相对提升 4.1% 和 3.4%。

基于上述静态燃烧特性和内弹道特性的分析可得,TATB包覆发射药和NA包覆发射药在不同方面互 有优势,且二者性能均优于空白发射药。综合来看,在

图3 三种发射药样品的内弹道特性对比

Fig.3 Comparison of internal ballistic characteristic between three propellant samples

相似的 P,水平下,NA 包覆发射药更有利于不同温度下 弹丸初速的提升,对于发射药燃烧特性的整体改善效 果更好。特别地,在包覆发射药制备过程中,NA的用 量能低于TATB,有利于控制生产成本。

本研究通过实验对比了3种发射药的堆积密度、局部燃速、爆热、燃烧渐增性以及内弹道性能;然而,由于上述物理参数具有不同的量纲,本节单独依靠实验方法难以定量评价发射药基本性质变化对燃烧性能的影响。为克服这一问题,下面引入层次分析法(AHP),依据本节的实验数据构建不同判断矩阵,进而计算堆积密度、局部燃速、爆热等基本性质对发射药综合燃烧性能的影响权重。

2 基于层次分析法(AHP)的应用分析

2.1 模型建立

2.1.1 层次结构模型

参照文献[13-14],可构建如图4所示的层次结 构模型:

目标层中将发射药燃烧性能作为模糊评价中的最 终分析对象,其与燃烧渐增性和内道弹性能有关;在准 则层中,将堆积密度、局部燃速、爆热等发射药基本性 质设为准则层因素,对目标层因素具有不同影响权重; 在方案层中将空白发射药、TATB包覆发射药和NA包 覆发射药作为待选方案,AHP需要在不同准则层因素 下,对方案层中的所有方案进行模糊判断,最终通过权 重来计算不同方案对目标层因素的相对影响情况。

2.1.2 判断矩阵

AHP的计算依赖于判断矩阵 *A*;*A*的元素 *A*(*i*,*j*) 表征本层因素 *i*与因素 *j*对上一层因素的相对影响程度,如表 3 所示;此时,因素 *i*比因素 *j*的影响更重要;存在 *A*(*j*,*i*)=1/*A*(*i*,*j*)。

参照文献[13-14],本研究需要构建的判断矩阵为:

式(2)中,判断矩阵A₁表征不同发射药样品对堆

图4 层次结构模型示意图

Fig.4 Schematic diagram of hierarchical model

表3 判断矩阵元素 A(i,j)的标度

Table 3 Numerical scale for judgment matrix element A(i, j)

numerical	description
scale	description
1	factor <i>i</i> and factor <i>j</i> are equally important
3	factor <i>i</i> is slightly more important than factor <i>j</i>
5	factor <i>i</i> is more important than factor <i>j</i>
7	factor i is strongly more important than factor j
9	factor <i>i</i> is absolutely more important than factor <i>j</i>
2,4,6,8	median value corresponding to the adjacent judgment
	above

积密度的影响,存在 a₂₁、a₃₁和 a₃₂这 3 个未知标度。其中, a₂₁表征 TATB 包覆发射药和空白发射药对堆积密度的相对影响程度; a₃₁表征 NA 包覆发射药和空白发 射药对堆积密度的相对影响程度, a₃₂表征 NA 包覆发射药和空白发 射药和 TATB 包覆发射药对堆积密度的相对影响 程度。

$$\boldsymbol{A}_{1} = \begin{bmatrix} 1 & 1/a_{21} & 1/a_{31} \\ a_{21} & 1 & 1/a_{32} \\ a_{31} & a_{32} & 1 \end{bmatrix}$$
(2)

式(3)中,判断矩阵 A_2 表征不同发射药样品对爆 热的影响,存在 b_{12} 、 b_{13} 和 b_{23} 这3个未知标度。其中, b_{12} 表征空白发射药和TATB包覆发射药对爆热的相对 影响程度, b_{13} 表征空白发射药和NA包覆发射药对爆 热的相对影响程度, b_{23} 表征TATB包覆发射药和NA 包覆发射药对爆热的相对影响程度。

$$\boldsymbol{A}_{2} = \begin{bmatrix} 1 & b_{12} & b_{13} \\ 1/b_{12} & 1 & b_{23} \\ 1/b_{13} & 1/b_{23} & 1 \end{bmatrix}$$
(3)

式(4)中,判断矩阵 A₃表征不同发射药样品对局 部燃速的影响,未知标度 c₂₁、c₃₁和 c₃₂与基础高能硝胺 药药条 TR-0、添加 TATB 的高能硝胺药药条 TR-1 和添 加 NA 的高能硝胺药药条 TR-2 的燃速差异有关。其

CHINESE JOURNAL OF ENERGETIC MATERIALS

中, c₂₁表征 TR-1和 TR-0对局部燃速的相对影响程度, c₃₁表征 TR-2和 TR-0对局部燃速的相对影响程度, c₃₁ 表征 TR-2和 TR-1对局部燃速的相对影响程度。

$$\mathbf{A}_{3} = \begin{bmatrix} 1 & 1/c_{21} & 1/c_{31} \\ c_{21} & 1 & 1/c_{32} \\ c_{31} & c_{32} & 1 \end{bmatrix}$$
(4)

式(5)中,判断矩阵 **A**₄表征不同发射药基本性质 对综合燃烧性能的影响,存在 y₂₁、y₃₁和 y₃₂这3个未知 标度。其中,y₂₁表征爆热和堆积密度对燃烧性能的相 对影响程度,y₃₁表征局部燃速和堆积密度对燃烧性能 的相对影响程度,y₃₂表征局部燃速和爆热对燃烧性能 的相对影响程度。

$$\boldsymbol{A}_{4} = \begin{bmatrix} 1 & 1/y_{21} & 1/y_{31} \\ y_{21} & 1 & 1/y_{32} \\ y_{31} & y_{32} & 1 \end{bmatrix}$$
(5)

与经典方法^[13-14]不同,本研究将依靠实验表征的 样品燃烧性能,直接构建目标层和方案层间的判断矩 阵 *A*₅,用于后续模糊评价校核。式(6)中,*z*₂₁表征 TATB包覆发射药和空白发射药对燃烧性能的相对影 响程度;*z*₃₁表征 NA包覆发射药和空白发射药对燃烧 性能的相对影响程度,*z*₃₂表征 NA包覆发射药和TATB 包覆发射药对燃烧性能的相对影响程度。

$$\mathbf{A}_{5} = \begin{bmatrix} 1 & 1/z_{21} & 1/z_{31} \\ z_{21} & 1 & 1/z_{32} \\ z_{31} & z_{32} & 1 \end{bmatrix}$$
(6)

2.1.3 影响权重计算

求解 3×3 的矩阵 $A_k(k=1~5)$ 的最大特征值 λ_k 和所 对应的特征向量 $\omega_k = (w_{k,1}, w_{k,2}, w_{k,3})$:

$$\boldsymbol{A}_{k}\boldsymbol{\omega}_{k} = \boldsymbol{\lambda}_{k}\boldsymbol{\omega}_{k} \tag{7}$$

将 $\omega_k(k=1\sim5)$ 进行归一化处理获得权重向量 $\omega_{s,k}=(w_{s,k,1},w_{s,k,2},w_{s,k,3})$:

$$\boldsymbol{\omega}_{\mathrm{s,k}} = \boldsymbol{\omega}_{\mathrm{k}} / \sum_{i=1}^{3} W_{\mathrm{k,i}}$$
(8)

 $\omega_{s,k}$ 的分量 $w_{s,k,1}$, $w_{s,k,2}$, $w_{s,k,3}$ 即是图 4 中不同因素 对上一层因素的影响权重。例如, $\omega_{s,4} = (w_{s,4,1}, w_{s,4,2}, w_{s,4,3})$ 中, $w_{s,4,1}$ 、 $w_{s,4,2}$ 和 $w_{s,4,3}$ 分别表征发射药堆积密 度、爆热和局部燃速对综合燃烧性能的影响权重; $\omega_{s,5} = (w_{s,5,1}, w_{s,5,2}, w_{s,5,3})$ 中, $w_{s,5,1}, w_{s,5,2}$ 和 $w_{s,5,3}$ 则分别表 征空白发射药、TATB包覆发射药和NA包覆发射药对 燃烧性能的影响权重。判断矩阵 A_k 的一致性指标 CI 的计算公式为:

$$CI = (\lambda_k - 3)/2 \tag{9}$$

计算 CR=CI/0.58, 若 CR<0.1, 判断矩阵 A_k的一致 性检验通过^[14]; 若 CR>0.1, 需要重新构造 A_k。

基于权重向量 ω_{s,1}、ω_{s,2}和 ω_{s,3},可构建权重矩 阵 W:

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{\omega}_{s,1} \\ \boldsymbol{\omega}_{s,2} \\ \boldsymbol{\omega}_{s,3} \end{bmatrix} = \begin{bmatrix} W_{s,1,1} & W_{s,1,2} & W_{s,1,3} \\ W_{s,2,1} & W_{s,2,2} & W_{s,2,3} \\ W_{s,3,1} & W_{s,3,2} & W_{s,3,3} \end{bmatrix}$$
(10)

最后,在经典AHP方法^[13-14]中,按式(11)计算评 价向量 **ω**_{PO} = (*w*_{PO 1}, *w*_{PO 2}, *w*_{PO 3}):

$$\boldsymbol{\omega}_{PO} = \boldsymbol{\omega}_{s,4} \boldsymbol{W} \tag{11}$$

可根据分量 w_{PO.1}, w_{PO.2}, w_{PO.3}的相对大小,进行方案排序, 定量对比空白发射药、TATB 包覆发射药和 NA包覆发射药对燃烧性能的综合影响。

在本研究中,针对不同发射药样品对燃烧性能的 综合影响, $\omega_{PO}=(w_{PO,1}, w_{PO,2}, w_{PO,3})$ 是通过经典AHP方 法^[13-14]计算得到的评价,而 $\omega_{s,5}=(w_{s,5,1}, w_{s,5,2}, w_{s,5,3})$ 则是直接对发射药燃烧性能实验测试结果的评价;因 此,若图4中的层次结构模型构造合理, $\omega_{s,5}$ 和 ω_{PO} 各分 量应足够接近。后续将基于这一准则验证经典AHP 方法^[13-14]在高能硝胺发射药改性评价中的应用。

2.2 模型参数设置

在构建判断矩阵 A_k(k=1~3)时,经典 AHP方法^[13-14]仅根据表3进行人为主观取值,具有较大的不确定性。在本研究中,将引入1.4节中的实验测试结果来减少模糊判断的不确定性。首先比较差异明显的空白发射药和TATB包覆发射药,依照表3确定标度a₂₁、b₁₂和 c₂₁,从而建立因素标度和实际物理参数的映射;而后,在相同评价体系下,可以快速确定与NA包覆发射药有关的标度,包括 a₃₁、a₃₂、b₁₃、b₂₃、c₃₁和 c₃₂。上述操作在TATB包覆发射药和NA包覆发射药的对比中,引入了空白发射药作为相对参考系;在包覆发射药的药的模糊评价中,这有利于降低人为主观因素造成的

不确定性。具体参数设置为:

2.2.1 判断矩阵 A1

由表1可得,不同发射药样品的堆积密度仅在 0.95~0.96 g·cm⁻³区间波动,故可取 $a_{21}=a_{31}=a_{32}=1$,表征3种发射药样品对堆积密度的影响基本一致;此时, A_1 对应CR=0,权重向量 $\omega_{5,1}=(1/3,1/3,1/3)$ 。

2.2.2 判断矩阵 A₂

由表1可得,TATB包覆发射药的爆热值4688 J·g⁻¹ 仅稍差于空白发射药的爆热值4806 J·g⁻¹。按表3可 令 *b*₁₂=3,表征空白发射药对爆热的影响稍强于TATB 包覆发射药。此时,以1作为基准值,标度增加1对应 着爆热差距增加(4806-4688)/(*b*₁₂-1)=59 J·g⁻¹。

因此,对比NA包覆发射药和其余2种发射药时, 爆热差距每增加59 J·g⁻¹,标度 b_{13} 和 b_{23} 需升高1;另外,考虑包覆发射药制备过程中,NA的用量远小于 TATB的用量, b_{13} 和 b_{23} 可额外增加1。上述计算需四舍 五入取整。表1中NA包覆发射药的爆热为4516 J·g⁻¹, 故计算 b_{13} 和 b_{23} 如式(12):

$$\begin{cases} b_{13} = 1 + (4806 - 4516)/59 + 1 \approx 7 \\ b_{23} = 1 + (4688 - 4516)/59 + 1 \approx 5 \end{cases}$$
(12)

最终,基于上述 b_{12} 、 b_{13} 和 b_{23} , A_2 对应CR=0.056, 权重向量 $\omega_{s,2}$ =(0.65,0.28,0.07)。

2.2.3 判断矩阵A₃

基于图 1 中的燃速系数 u_1 确定 A_3 中的未知标度 c_{21} 、 c_{31} 和 c_{32} 。与药条 TR-0的 u_1 =1.20 mm·s⁻¹·MPa⁻ⁿ 相比,药条 TR-1的 u_1 =0.84 mm·s⁻¹·MPa⁻ⁿ小幅度下 降,按表 3 可令 c_{21} =3,表明 TATB 的加入能起到有效的 降燃速效果。此时,以1作为基准值,标度增加1对应着 u_1 差距增加(1.20-0.84)/(c_{21} -1)=0.18 mm·s⁻¹·MPa⁻ⁿ。

因此,对比药条 TR-2 和其余 2 种药条时, u_1 差距 每增加 0.18 mm·s⁻¹·MPa⁻ⁿ,标度 c_{31} 和 c_{32} 可升高 1;此 外,考虑包覆发射药制备过程中,NA 的用量远小于 TATB 的用量, c_{31} 和 c_{32} 也可额外增加 1。在图 1 中药条 TR-2 的 u_1 =0.84 mm·s⁻¹·MPa⁻ⁿ,按上述计算四舍五入 取整后, c_{31} 和 c_{32} 如式(13)所示:

$$\begin{cases} c_{31} = 1 + (1.20 - 0.68)/(0.18 + 1 \approx 5) \\ c_{32} = 1 + (0.84 - 0.68)/(0.18 + 1 \approx 3) \end{cases}$$
(13)

最终,基于上述 *c*₂₁、*c*₃₁和 *c*₃₂, *A*₃对应 CR=0.033, 权重向量 **ω**_{5,3}=(0.10, 0.26, 0.64)。

2.2.4 判断矩阵A4

A₄中的未知标度值 y₂₁、y₃₁和 y₃₂无法直接参考实验结果。因此,研究根据表 3 从 1~9 的离散区间中取

假设值,构造 $y_{21}=2, y_{31}=y_{32}=9$;在该假设下, A_4 对应 CR=0.046,权重向量 $\omega_{s,4}=(0.07, 0.11, 0.82)$ 。上述 A_4 和 $\omega_{s,4}$ 的假设验证将在2.3节开展。

2.2.5 判断矩阵A₅

基于燃烧渐增性因子 P_r 和内弹道性能参数,确定 A_5 中的未知标度 z_{21} 、 z_{31} 和 z_{32} 。在表 2 中,与空白发射 药相比,TATB 包覆发射药的 P_r 相对增长 80%,燃烧渐 增性得到明显改善, z_{21} 可从基准值 1 相对增加 2;同 时,由图 3 的实验数据可知,TATB 包覆发射药的温度 系数性能和常温下的弹丸初速均得到改善, z_{21} 可再相 对增加 2;最终 z_{21} =1+2+2=5;对于 NA 包覆发射药,因 图 2 中不同包覆发射药具有相近的燃烧渐增性, z_{31} 也 可从基准值 1 相对增加 2;同时,与空白发射药相比, NA 包覆发射药 3 个温度点下 V_0 均明显增加, z_{31} 可再 相对增加 3;最终 z_{31} =1+2+3=6;为满足 CR<0.1 的一 致性准则, z_{32} 需在 z_{31}/z_{21} 左右取整。最终,可取 z_{32} =2, 其表征 NA 包覆发射药的综合燃烧性能略好于 TATB 包覆发射药,这与实验测试结果的分析相符。此时,基于上述 z_{21} 、 z_{31} 和 z_{32} , A_5 对应 CR=0.025,权重向量 $\omega_{s,5}$ = (0.08,0.34,0.58)。

2.3 模型验证

研究将通过 ω_{s,5}中的权重分量,校核由经典 AHP 方法^[13-14]所获得的模糊评价结果 ω_{PO},以验证本研究 模糊评价模型的有效性。

基于上文参数设置,式(11)中的权重矩阵W为:

$$\boldsymbol{W} = \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 0.65 & 0.28 & 0.07 \\ 0.1 & 0.26 & 0.64 \end{bmatrix}$$
(14)

结合 $\omega_{s,4}$ =(0.07,0.11,0.82),式(11)中 ω_{PO} =(0.17,0.27,0.56)。最终,表4对比了 $\omega_{s,5}$ 和 ω_{PO} 中不同分量的偏差;不同权重分量的相对大小,表征了空白发射药、TATB包覆发射药和NA包覆发射药对燃烧性能的影响程度。

表4 基于层次分析法的模糊综合评价验证

 Table 4
 Verification for fuzzy comprehensive evaluation by analytic hierarchy process (AHP)

factor in alternative laver	blank propellant	propellant coated	propellant coated
	biank propenant	with TATB	with NA
evaluation result from AHP calculation ($\boldsymbol{\omega}_{\text{PO}})$	0.08	0.34	0.58
evaluation result from judgment matrix for experimental measurement ($\pmb{\omega}_{s,5})$	0.17	0.27	0.56
absolute deviation	0.09	0.07	0.02

由表4可以看出,在ω_{PO}和ω_{s,5}间,不同权重分 量的绝对偏差,即lw_{PO,1}-w_{s,5,1}l、lw_{PO,2}-w_{s,5,2}l和 lw_{PO,3}-w_{s,5,3}l,均不超过0.1,且不同分量的相对大小 未发生变化,均满足空白发射药<TATB包覆发射药 <NA包覆发射药。因此,基于经典AHP方法^[13-14]所 得的ω_{PO}能够模糊反映不同发射药样品的真实燃烧 性能差异;相关结果符合对应的实验测试分析。综 上所述,在高能硝胺发射药改性评价中建立模糊综 合评价模型是可行的。模糊评价结果ω_{PO}的主要误 差来源在于判断矩阵的元素仅能从表3的有限离散 标度中进行选择,简化了发射药性能的实际差异。 在未来的模型改进中,需对表3中的标度变化进一 步细化。

2.4 结果与讨论

在本研究所构建的模糊评价模型中, $\omega_{s,4}$ =(0.07, 0.11,0.82);其中, $w_{s,4,1}$ =0.07、 $w_{s,4,2}$ =0.11和 $w_{s,4,3}$ = 0.82分别表征发射药堆积密度、爆热和局部燃速对综 合燃烧性能的影响权重。因此,对于发射药综合燃 烧性能,局部燃速的影响大于爆热的影响;而堆积 密度的影响最小。对于准则层中不同因素的模糊 评价, ω_{s,1}=(1/3,1/3,1/3)表明3种发射药样品的堆 积密度基本一致; ω_{s,2}=(0.65,0.28,0.07)表明:针 对爆热的影响,存在空白发射药>TATB包覆发射药 >NA包覆发射药,与空白发射药>TATB包覆发射药 存在能量损失; ω_{s,3}=(0.10,0.26,0.64)表明:针对 局部燃速的影响,存在NA包覆发射药>TATB包覆 发射药>空白发射药,NA包覆的降燃速效果强于 TATB包覆。最终,在模糊评价的结论中,NA包覆 发射药因局部燃速的影响具有最好的综合燃烧性 能,TATB包覆发射药次之,而空白发射药燃烧性能 最差。

从上述分析可以看出,在包覆工艺中,降燃速材料的选择应首要考虑包覆层的降燃速效果,同时避免爆热和堆积密度的过度下降;爆热变化的影响稍大于堆积密度,决定了发射药所能释放的能量上限。因此,低燃速的含能材料TATB能作为包覆工

艺中的降燃速材料;在发射药能量水平的小幅度变 化下,TATB包覆能有效地改善高能硝胺发射药的 综合燃烧性能,具有实用性。与TATB相比,NA属 于燃速更低的惰性高分子材料,降燃速效果更强。 最终,尽管NA包覆带来的能量损失较TATB包覆更 大,NA包覆发射药的综合燃烧性能优于TATB包覆 发射药。

3 结论

针对7孔粒状高能硝胺发射药,分析了空白发射 药、TATB包覆发射药和NA包覆发射药间堆积密度、 局部燃速、爆热、静态燃烧特性以及内弹道性能的差 异;在此基础上,论证了模糊评价方法在包覆发射药设 计应用中的可行性。主要结论如下所示:

(1)可通过层次分析法(AHP),基于堆积密度、爆 热和局部燃速的变化,评估发射药综合燃烧性能的改 善情况。其中,局部燃速、爆热和堆积密度的影响权重 分别为0.82、0.11和0.07。在未来包覆工艺中,降燃 速材料的选择应首要考虑包覆层的降燃速效果,同时 避免爆热和堆积密度的过度下降。

(2)3种发射药堆积密度的宏观变化不大;与空白 发射药相比,TATB包覆发射药的爆热相对降低2.5%, NA包覆发射药的爆热可相对降低6%;但在空白发射 药的基础上,NA包覆的降燃速效果强于TATB包覆。 最终,基于实验测试的分析和模糊评价均表明:NA包 覆发射药的燃烧性能优于TATB包覆发射药,且二者 明显强于空白发射药。具体的,2种包覆发射药对燃 烧渐增性因子的相对改善可达80%,并使常温下 (*T*=20 ℃)的弹口初速 V₀增长超过40 m·s⁻¹。

参考文献:

- [1] 姜宏,高原,韩志强,等. 2022世界火炮与自动武器技术发展报告[R].中国兵器工业集团第二一O研究所, 2022.
 JIANG Hong, GAO Yuan, HAN Zhi-qiang, et al. Report for world artillery and automatic weapon technology development in 2022[R]. Research Institute 210 of Norinco Group, 2022.
- [2] 韦丁,靳建伟,严文荣,等. 高能硝胺发射药烧蚀特性分析[J]. 科学技术与工程,2020,20(21):8563-8567.
 WEI Ding, JIN Jian-wei, YAN Wen-rong, et al. Analysis of the erosion characteristics of high energy nitramine propellant[J]. *Science Technology and Engineering*, 2020, 20(21):8563-8567.
- [3] 王琼林,刘少武,朱扬春,等.多层高能硝胺发射药研究[J].火 炸药学报,2008,31(2):64-67.

WANG Qiong-lin, LIU Shao-wu, ZHU Yang-chun, et al. Research on mutilayer disc nitramine gun propellant [J]. *Chinese Journal of Explosives & Propellants*, 2008, 31 (2) : 64-67.

- [4] 杨建兴,杨伟涛,马方生,等. RDX 粒度对硝胺发射药力学性能及 燃烧性能的影响[J]. 含能材料,2017,25(9):706-711.
 YANG Jian-xing, YANG Wei-tao, MA Fang-sheng, et al. Effect of RDX particle size on the mechanical and combustion properties of nitramine gun propellant [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25 (9): 706-711.
- [5] DAHIWALE M, BHONGALE C, ROY S, et al. Studies on ballistic parameters of deputy phthalate-coated triple base propellant-used in large caliber artillery gun ammunition [J]. *Journal of Energetic Materials*, 2019, 37(1): 98–109.
- [6] WANG M, JIN G, ZHOU Y, et al. Integration of complex geometry gun propellant form function calculation and geometry optimization[J]. *Propellants, Explosives, Pyrotechnics*, 2022, 47, e202200062:1–11.
- [7] 王云云,邓国栋,徐君,等. 单基发射药中钝感剂组分含量的快速 检测方法[J]. 火炸药学报,2018,41(4),408-413.
 WANG Yun-yun, DENG Guo-dong, XU Jun, et al. A rapid determination method of deterrent component content in single-base gun propellant[J]. Chinese Journal of Explosives & Propellants, 2018,41(4):408-413.
- [8] LIANG H, DING Y, LI S, et al. Combustion performance of spherical propellants deterred by energetic composite deterring agents[J]. ACS Omega, 2021, 6: 13024–13032.
- [9] LIU Bo, WANG Qiong-lin, LIU Shao-wu, et al. Study on the performance of the modified single base gun propellant[J]. *Advanced Materials Research*, 2012, 415–417: 1656–1661.
- [10] 魏伦,于慧芳,韩冰,等.一种新型聚酯钝感剂在发射药中的应用
 [J].火炸药学报,2012,35(3):91-94.
 WEI Lun, YU Hui-fang, HAN Bin, et al. Application of a novel deterrent polyester in gun propellant[J]. Chinese Journal of Explosives & Propellants, 2012, 35(3):91-94.
- [11] 李达,刘少武,于慧芳,等. 溶剂抽取工艺制备改性单基发射药的 燃烧性能[J]. 含能材料, 2012, 20(3): 341-344.
 LI Da, LIU Shao-wu, YU Hui-fang, et al. Combustion performance of modified single base gun propellant prepared by solvent extraction process[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(3): 341-344.
- [12] LI S, CHEN H, LI Y, et al. Surface denitration structure on dynamic combustion performance and muzzle flame of mixed nitrate gun propellant[J]. *Propellants, Explosives, Pyrotechnics*, 2023, 48, e202300093: 1–13.
- [13] 付强,马忠亮,高可正,等.变燃速发射药连续化生产模糊综合 评价模型研究[J].安全与环境学报,2010,10(1):197-200.
 FU Qiang, MA Zhong-liang, GAO Ke-zheng, et al. Comprehensive fuzzy continuous production evaluation model for the variable-combustion rate propellants[J]. Journal of Safety and Environment, 2010, 10(1): 197-200.
- [14] ZHOU Da-cheng, CHEN Hong-chang, CHENG Guo-zhen, et al. SecIngress: An API gateway framework to secure cloud applications based on N-variant system [J]. *China Communications*, 2021, 18(8): 17–34.

Fuzzy Comprehensive Evaluation Model Applying in the Modification Evaluation of High Energy Nitramine Gun Propellant

GUO Zhi-gang, LI Man-man, WANG Feng, YU Hui-fang, WEI Lun, WANG Qiong-lin

(Xi' an Institution of Modern Chemistry, Xi' an 710065, China)

Abstract: In order to investigate the application of the fuzzy comprehensive evaluation model in the modification evaluation of high energy nitramine gun propellant, the triamino trinitrobenzene (TATB) coated and polyester (NA) coated gun propellant were prepared by coating technology using TATB and NA as the burning rate reduction materials, and their bulk densities, burning rates, explosion heats, propellant burning progressivities and interior ballistic performances were compared. Moreover, the analytic hierarchy process (AHP) was adopted to quantify the influence of TATB and NA on the basic characteristics and the combustion performances above. It was found that, the fuzzy comprehensive evaluation can be established between the basic characteristics and combustion performances of propellants. For the better overall combustion performance, the weight of burning rate is equal to 0.82, which is the highest; the weights of explosion heat and bulk density are equal to 0.11 and 0.07, respectively. In the case of small difference in bulk density, even though the energy loss caused by NA coating is greater than that of TATB coating, the decrease of burning rate by NA coating would be larger and the propellant coated with NA has the better performance than the propellant coated with TATB, and the two are significantly better than that of blank propellant

Key words: fuzzy comprehensive evaluation model; high energy nitramine gun propellant; coating; triamino-trinitrobenzene (TATB); polymer ester (NA).

CLC number: TJ55;TQ562

Document code: A

DOI: 10.11943/CJEM2024069

(责编:姜梅)