文章编号:1006-9941(2023)07-0662-10

硅烷偶联剂改性 α -AlH₃材料的制备及其与HMX和CL-20的相容性

史 喆',谭 淇2,王旭文',路涛杰',张 健',朱朝阳3,夏德斌',林凯峰',杨玉林'

(1.哈尔滨工业大学化工与化学学院,新能源转换与存储关键材料技术工业和信息化部重点实验室,黑龙江 哈尔滨 150001;
2.高等教育出版社有限公司,北京 100020; 3.航天化学动力技术重点实验室,湖北 襄阳 441003)

摘 要: 为提高α-AlH₃与HMX和CL-20的相容性,选用带有不同有机官能团的硅烷偶联剂对α-AlH₃进行包覆改性。通过X射线 衍射仪(XRD)、红外光谱仪(FT-IR)、X光电子能谱(XPS)和扫描电镜(SEM)对包覆改性前后α-AlH₃的结构和形貌进行表征,并考察 α-AlH₃和改性后所得材料分别与HMX和CL-20的相容性。结果表明:硅烷偶联剂在不改变α-AlH₃本体结构的基础上,可在其表面 形成均匀的包覆层;其中γ-巯丙基三乙氧基硅烷(KH580)包覆改性提高了α-AlH₃热稳定性,使其最高热分解温度提高1.7℃,活化 能 *E*_a值增加 2.21 kJ·mol⁻¹;γ-氨丙基三乙氧基硅烷(KH550)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)改性后,α-AlH₃与 HMX混合体系的相容性从3级提升至1级;KH550改性后,α-AlH₃与CL-20混合体系的相容性从4级提升至1级。

关键词:固体推进剂;改性α-AlH₃;硅烷偶联剂;HMX;CL-20;相容性
 中图分类号:TJ55;V512
 文献标志码:A

DOI:10.11943/CJEM2023081

0 引言

AlH₃作为高能固体推进剂配方中理想的轻金属氢 化物燃料,拥有燃烧热高、含氢量高、燃烧产生气体等优 点^[1-4]。目前通过湿化学法可以合成出非溶剂化α、α'、β、 γ、δ、ε、δ的7种不同晶型AlH₃,其中α-AlH₃表面存在的氧 化层使其具有动力学抑制效应的特性,保持亚稳状态,具 备推进剂领域潜在应用价值^[5]。由于α-AlH₃具有释氢燃 烧特性,可在推进剂燃烧时引入氢原子,使推进剂燃气的 平均相对分子质量降低,同时大幅提高推进剂比冲,此外 氢气燃烧也会降低推进剂燃烧时的绝热火焰温度,减少 发动机喷管烧蚀的出现^[6-9]。但是,α-AlH₃在实际应用 中存在许多问题亟待解决,例如对外界环境刺激较敏 感、易发生释氢反应、湿热稳定性和相容性较差等,其

收稿日期:	2023-04-19;	修回日期:	2023-05-31
-------	-------------	-------	------------

- 基金项目:航天化学动力技术重点实验室开放基金资助(STACPL220181B04) 作者简介:史喆(1993-),男,博士研究生,主要从事含能材料设计 合成研究。e-mail:chemshizhe@163.com
- **通信联系人:**杨玉林(1969-),男,教授,主要从事含能材料设计合成研究。e-mail:ylyang@hit.edu.cn
- 张健(1988-), 男, 副教授, 主要从事含能材料设计合成研究。 e-mail;zhaji@hit.edu.cn

中相容性差的问题极易导致推进剂出现加速失效老化, 无法发挥能量特性,甚至影响推进剂的安全使用^[10-11]。

针对α-AlH,存在的热稳定性差、与推进剂其他组 分相容性差等问题,目前已有表面钝化、离子掺杂以及 表面包覆三种解决方法[12-13]。严启龙等[14]研究了10% 盐酸钝化处理对 α -AlH₁稳定性的影响,结果表明盐酸钝 化可以使其表面产生蜂窝状结构,减少热分解过程中AI 核位点的产生。然而,表面钝化法使用的酸性溶液易造 成体系整体能量损失,并且钝化层无法改善 α -AlH₃相容 性。离子掺杂法主要通过在 AlH,转晶过程中添加自由 基受体稳定剂或在 AIH, 晶格中掺入 Hg、Mg、Si 等杂元 素来消除晶体中反应活性位点[15-16]。离子掺杂法同样 不会改善 α -AlH₃的相容性,并且引入非含能组分的自由 基受体和杂原子同时也会造成晶体纯度的下降和能量 的损失。相比于以上两种方法,表面包覆法在改善 α -AlH₃湿热稳定性和相容性方面具有更多潜在优势,选 用惰性包覆剂可以确保α-AlH₃与高能推进剂中硝酸酯 类其它组分相隔离,有效改善材料相容性[17-19]。

硅烷偶联剂作为一种具有特殊结构的低分子有机 硅化合物,其在用于材料改性时,各分子硅醇可以相互 结合齐聚形成网络状结构的高分子膜覆盖在材料颗粒 表面,获得的改性材料包覆效果较好,被广泛应用于含

引用本文:史喆,谭祺,王旭文,等. 硅烷偶联剂改性 α-AlH₃ 材料的制备及其与 HMX和 CL-20的相容性[J]. 含能材料,2023,31(7):662-671. SHI Zhe, TAN Qi, WANG Xu-wen, et al. Silane Coupling Agent Modified α-AlH₃ Materials Preparation and their Compatibility with HMX and CL-20[J]. *Chinese Journal of Energetic Materials* (Hanneng Cailiao),2023,31(7):662-671.

Chinese Journal of Energetic Materials, Vol.31, No.7, 2023 (662-671)

网络出版日期: 2023-07-03

能材料、涂料、塑料、橡胶等领域^[20-22]。Russell等^[23]研 究结果表明用γ-甲基丙烯酰氧基丙基三甲氧基硅烷 (KH570)和γ-胺基丙基三乙基硅烷(A-1100)对高氯 酸铵(AP)进行预处理,能改善推进剂的力学性能、工 艺性能和点火性能。采用γ-氨丙基三乙氧基硅烷 (KH550)包覆改性硝基胍,可改善发射药的力学和燃 烧稳定性^[24]。以上硅烷偶联剂表面包覆改性的手段, 大部分应用于单分子炸药类含能材料,针对α-AlH₃稳 定化改性及包覆改性对α-AlH₃与推进剂其它组分相 容性影响的研究少有公开报道。

本研究采用KH550,γ-缩水甘油醚氧丙基三甲氧 基硅烷(KH560),KH570和γ-巯丙基三乙氧基硅烷 (KH580)四种分子结构带有不同有机官能团的硅烷 偶联剂对α-AlH₃进行包覆改性处理,并对改性前后的 α-AlH₃进行结构和形貌表征,此外对包覆改性前后的 材料的热分解性能及其分别与HMX和CL-20的相容 性进行研究,为进一步开展α-AlH₃在推进剂中的应用 提供基础数据。

1 实验部分

1.1 试剂与仪器

试剂:α-AlH₃,工业级,湖北航天化学技术研究所; γ-氨丙基三乙氧基硅烷(KH550),γ-缩水甘油醚氧丙 基三甲氧基硅烷(KH560),γ-甲基丙烯酰氧基丙基三 甲氧基硅烷(KH570),γ-巯丙基三乙氧基硅烷 (KH580),分析纯,国药集团化学试剂有限公司;环四 亚甲基四硝胺(HMX),工业级,北方惠安化学工业有 限公司;六硝基六氮杂异伍兹烷(CL-20),工业级,辽 宁庆阳特种化工有限公司;无水乙醇、乙醚,天津科密 欧化学试剂有限公司。

仪器:德国 Bruker公司 D8型X射线衍射仪 (XRD),扫描范围10°~90°,步进角为0.05°;美国赛默 飞公司iS50型傅里叶变换红外光谱仪(FT-IR)结合衰 减全反射附件,扫描范围4000~500 cm⁻¹,分辨率为 0.1 cm⁻¹;日本日立公司Hitachi SU-8000HSD场发射扫 描电子显微镜(SEM),测试电压为10 kV;美国赛默飞ES-CALAB 250Xi型X射线光电子能谱仪(XPS),表面检测 深度约为5~10 nm;德国耐驰公司STA449 F5型同步热 分析仪(TG-DSC),温度区间为50~500℃,升温速率分 别为5,10,15,20℃·min⁻¹,氮气流速为50 mL·min⁻¹。

1.2 α -AlH₃包覆改性材料的制备

将1gα-AlH₃在Schlenk系统中抽真空1h后,与

40 mL无水乙醚配制成悬浮液,超声处理 30 min,加入 0.2 g KH550 后常温搅拌 2 h,使 KH550 全部吸附 于α-AlH₃表面,加入 0.1 mL无水乙醇引发硅烷偶联剂 的水解缩合反应。然后将悬浮液加热回流 4 h,反应 完成后将悬浮液降至室温再倒入砂芯漏斗中过滤,得 到的滤饼经无水乙醚多次洗涤后,在 45 ℃真空烘箱中 烘干,得到α-AlH₃-KH550样品。

在上述制备过程中,将KH550分别替换为KH560、 KH570 和 KH580,可分别得到 α-AlH₃-KH560、 α-AlH₃-KH570和α-AlH₃-KH580样品。

1.3 相容性评价方法

本研究采用 GJB772A-1997 方法 502.1 差热分析 和差示扫描量热法,根据单独体系相对于混合体系的 分解峰温改变量和两种体系表观活化能的改变率,综 合评价混合体系的相容性^[25]。表观活化能由样品在 5,10,15,20 ℃·min⁻¹的升温速率下测得的最高分解 峰温后采用 Ozawa 公式^[25](1)线性拟合求得:

$$\log \beta = \log \left[\frac{AE_{a}}{RF(x)} \right] - 2.315 - 0.4567 \frac{E_{a}}{RT_{p}}$$
(1)

式中, E_a 为表观活化能, $kJ \cdot mol^{-1}$; R 为理想气体常数, 8.314 $J \cdot mol^{-1} \cdot K^{-1}$; A 为指前因子, s^{-1} ; β 为升温速率, $K \cdot min^{-1}$; T_a 为热流曲线的最高峰温值, K_a

分解峰温改变量(2)和表观活化能改变率(3)由 以下公式(2)和(3)计算:

$$\Delta T_{\rm P} = T_{\rm P1} - T_{\rm P2} \tag{2}$$

$$\Delta E/E_{\rm a} = \left| \frac{E_{\rm a} - E_{\rm b}}{E_{\rm a}} \right| \times 100\% \tag{3}$$

式中, ΔT_P 为单独体系相对于混合体系分解峰温改变 量, \mathbb{C} ; T_{P1} 为单独体系的分解峰温, \mathbb{C} ; T_{P2} 为混合体系 的分解峰温, \mathbb{C} ; $\Delta E/E_a$ 为单独体系相对混合体系表观 活化能改变率; E_a 为单独体系的表观活化能,kJ·mol⁻¹; E_b 为混合体系的表观活化能,kJ·mol⁻¹。相容性的推荐 性等级由以下判别标准进行判断:

 ΔT_0 ≤2.0 ℃, $\Delta E/E_a$ ≤20%, 相容性好, 1级;

 ΔT_0 ≤2.0 ℃, $\Delta E/E_2$ >20%, 相容性较好, 2级;

 ΔT_{p} >2.0 ℃, $\Delta E/E_{a}$ ≤20%, 相容性较差, 3级;

 $\Delta T_p>2.0$ ℃, $\Delta E/E_a>20% 或 \Delta T_p>5 ℃, 相容性差,4级^[25]。$

2 结果与讨论

2.1 X射线衍射分析(XRD)

首先,采用XRD研究不同硅烷偶联剂包覆改性对

α-AlH₃结构的影响,结果如图1所示,可以看出, α-AlH₃-KH550、α-AlH₃-KH560、α-AlH₃-KH570和 α-AlH₃-KH580样品的衍射峰均出现在2θ=27.63, 38.44,40.15,46.12,49.54,57.15,63.14,66.13, 67.84,72.35,73.82,82.24,86.12和87.60°,与 α-AlH₃(JCPDS71-2421)的(012),(104),(110), (006),(202),(024),(116),(122),(018), (214),(300),(208),(1010)和(220)晶面对应, 均显示明显的α-AlH₃特征衍射峰^[26]。这说明不同的硅 烷偶联剂附着在α-AlH₃表面未改变其物相结构。

图1 不同官能团型硅烷偶联剂包覆改性 α -AlH₃材料的 XRD 图谱

Fig.1 XRD patterns of α -AlH₃ composites coated with silane coupling agents of different functional groups

2.2 红外光谱分析分析(FT-IR)

图 2 为不同官能团硅烷偶联剂包覆改性后所得材料的FT-IR图谱。由图 2 可知,α-AIH₃的特征峰主要出现在1679 cm⁻¹和781 cm⁻¹处,为 Al—H键的弯曲和伸缩振动峰。α-AIH₃-KH550 在 1663,1340,1200 cm⁻¹和1017 cm⁻¹处出现了 C—N键和CH₂特征峰,α-AIH₃-KH560在1185 cm⁻¹和1084 cm⁻¹处出现环氧基团特征峰,α-AIH₃-KH570在2907 cm⁻¹和859 cm⁻¹处出现丙烯酸甲酯官能团特征峰,α-AIH₃-KH580在1164 cm⁻¹和1080 cm⁻¹处出现巯基官能团特征峰。以上结果表明,经改性处理后α-AIH₃的表面已经分别含有不同有机官能团的硅烷偶联剂。

2.3 X射线光电子能谱(XPS)和元素分析

通过 XPS 及表面元素组成分析,进一步考察包覆 改性后 α-AlH₃表面存在的有机官能团,结果如图 3 所 示。从图 3a 中可以看出,α-AlH₃-KH550出现了 N 1s 特征峰,α-AlH₃-KH580出现了 S 2p 特征峰,说明经 KH550和KH580分别改性后,可将 N 和 S 原子引入到 改性后的材料中。图 3b显示,包覆改性后材料表面 C 含量由原来的 6.24% 明显升高,其中 α-AlH₃-KH550

图 2 不同官能团型硅烷偶联剂包覆改性 α -AlH₃材料的FT-IR 图谱

Fig.2 FT-IR patterns of α -AlH₃ composites coated with silane coupling agents of different functional groups

b. Surface elemental compositions

图3 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料的XPS总 谱和表面元素组成

Fig.3 The XPS total spectrum and surface elemental compositions of α -AlH₃ composites coated with silane coupling agents of different functional groups

为 15.55%, α -AlH₃-KH560 为 37.58%, α -AlH₃-KH570 为 25.82% 和 α -AlH₃-KH580 为 19.90%, 同时, 表面 Al 含 量 明 显 降 低, 从 原 来 的 41.19% 分 别 降 低 至 30.11%, 19.73%, 26.58% 和 30.45%。这说明经改性 后 α -AlH₃表面分别包覆有不同的硅烷偶联剂。

有机元素分析结果与表面元素组成结果类似。如表1所示,由于不同硅烷偶联剂的主体分子结构均由长链烷基组成,包覆改性后 α -AlH₃中C含量的增加。 另外, α -AlH₃-KH550和 α -AlH₃-KH580中H含量相比 于 α -AlH₃和其它改性材料稍有降低,这是 α -AlH₃表面 含有的H⁻不稳定,与KH550和KH580的分子结构中 分别含有的氨基NH₂和巯基SH官能团中含有活泼 氢,在包覆过程中发生反应所致^[26]。

为了验证不同官能团的硅烷偶联剂与α-AlH₃表面 是否发生了相互作用,对所有样品的高分辨 XPS 谱进行 了分析,结果见图4。图4a显示,在α-AlH₃的 Al 2p 高分

表1 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料的元素分析结果

Table 1	Elemental analysis results of α -AlH ₃ composites coat-
ed with si	lane coupling agents of different functional groups

samples	С	Н
α-AlH ₃	0.31	9.90
α -AlH ₃ -KH550	0.55	9.79
α -AlH ₃ -KH560	1.23	9.89
α -AlH ₃ -KH570	1.04	9.91
α-AlH ₃ -KH580	0.59	9.86

辨 XPS 谱可以被拟合为两个特征峰,分别对应于 AI---H 键(71.81 eV)和AI—O/AI=O键(74.62 eV),O 1s的 两个特征峰分别位于531.22 eV和532.21 eV,分别对 应 Al-O和 Al=O键,由于α-AlH₃表面C含量太低而无 法进行分峰拟合。图4b~4e显示,包覆改性后材料的C 1s高分辨 XPS 谱均出现烷基链单元结构中的特征峰和 相对应的有机官能团特征峰,并且Al 2p和O 1s特征峰 中出现 Al-O-Si键,说明经包覆改性硅烷偶联剂中 硅烷一端已经与α-AlH。表面成功复合。根据上述结 果推断其反应机理是由于α-AlH₃长时间放置在空气 中表面不完全钝化,存在未反应的AI---H键和大量的 $AI-OH 键, 当硅烷偶联剂存在于 \alpha-AIH, 周围时, 因其$ 润湿性和键合性极易吸附在α-AlH₃表面,硅烷偶联剂 中的Si-OCH,和Si-OCH,CH,基团与表面的Al-H 键和AI-OH键发生反应,脱去CH₄,CH₃CH₃,CH₃OH 和 $CH_{2}CH_{2}OH_{2}进而对\alpha-AlH_{2}表面进行包覆。$

2.4 扫描电镜(SEM)分析

采 用 SEM 观 察 α -AlH₂, α -AlH₂-KH550, α-AlH₃-KH560, α-AlH₃-KH570 和 α-AlH₃-KH580 的形 貌和粒径,结果如图5所示。图5a中, α -AlH,的粒径 大部分处于 5~15 µm 之间,呈现带有棱角的不规则多 面体形貌,不同颗粒之间存在孪晶现象。图5b~5e显 示,经不同硅烷偶联剂包覆改性后颗粒的粒径大小基 本没有发生改变, 包覆前后样品均保持良好的分散性, 包覆改性材料相比于 α -AlH,表面出现明显变化,除了 原有孔洞和裂纹外,还出现了一些小颗粒状的凸起,这 是硅烷偶联剂在包覆改性过程中发生了水解缩合反 应,形成聚合物附着在α-AlH。晶体表面所造成。图5 通过 EDS 能谱表征了 AI、C 和 Si 元素在 α -AIH,表面的 分布,C和Si元素在改性后材料的表面均匀分布,说明 不同硅烷偶联剂在改性后材料表面均匀分布。上述结 果表明,包覆带有不同官能团的硅烷偶联剂已经对 α -AlH。的表面性质产生了影响。

图4 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料的高分辨 XPS 谱

Fig.4 The high resolution XPS spectrum of α-AlH₃ composites coated with silane coupling agents of different functional groups

图 5 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料的 SEM 照片和 EDS元素分布

Fig.5 The SEM image of α -AlH₃ composites coated with silane coupling agents of different functional groups and its EDS-Mapping diagrams

2.5 热分解性能与相容性分析

对 α -AlH₃, α -AlH₃-KH550, α -AlH₃-KH560, α -AlH₃-KH570和 α -AlH₃-KH580进行TG-DSC测试, 结果见图6。图6a中,包覆改性后材料的DSC曲线与 α -AlH₃相似,最高热分解峰温值相差较小,说明硅烷偶 联剂的包覆改性对 α -AlH₃热稳定性影响较小。 α -AlH₃-KH580具有最高的热分解峰温值为187.8 °C, 可能是KH580水解缩合后形成的包覆层对 α -AlH₃晶 体内部的隔绝作用较强,在受热情况下包覆层吸收部 分外界热量,使 α -AlH₃的分解峰温出现了偏移。另 外,如图6a所示由于包覆层阻碍了晶体内部的传热效 率,使包覆改性后材料分解放热峰的峰型均变缓变宽。 从图6b的TG曲线中可以看出,除 α -AlH₃-KH580以 外,其它硅烷偶联剂包覆后 α -AlH₃在释氢阶段分解质 量降低,与元素分析结果相一致,均是由硅烷偶联剂在 包覆改性过程中对 α -AlH₃负氢消耗所引起。

图 7 显示了 α-AlH₃和硅烷偶联剂包覆改性后所得 材料在不同升温速率下的 DSC 曲线,随着升温速率从 5 ℃・min⁻¹增加到 20 ℃・min⁻¹,所有样品 DSC 曲线的

图 6 不同 官 能 团 型 硅 烷 偶 联 剂 包 覆 改 性 α-AlH₃ 材 料 在 10 ℃・min⁻¹升温速率下的 TG-DSC 曲线

Fig.6 TG-DSC curves of α -AlH₃ composites coated with silane coupling agents of different functional groups at 10 °C ·min⁻¹ heating rates

668

最高热分解峰均出现右移的现象。

采用 Ozawa 模型中的公式(1)对单独体系下 α-AlH₃和包覆改性后材料的活化能值进行计算。图 8a 中,以log β 为纵坐标,1000/ T_p 为横坐标,进行线性拟合 后得到了一系列线性回归方程,所有线性回归方程的 相关系数 R^2 值均大于 0.99,说明根据斜率求得的 E_a 值 数据可靠。图 8b列出了活化能 E_a 值计算结果, α-AlH₃ 为 82.65 kJ·mol⁻¹, α-AlH₃-KH550 为 81.59 kJ·mol⁻¹, α-AlH₃-KH560 为 80.26 kJ·mol⁻¹, α-AlH₃-KH570 为 82.81 kJ·mol⁻¹和 α -AlH₃-KH580为84.86 kJ·mol⁻¹,除 α -AlH₃-KH580以外,包覆改性后材料的 E_a 值与 α -AlH₃ 结果相差较小,同样也说明硅烷偶联剂包覆改性对 α -AlH₃的热稳定性影响较小。

为了使α-AlH₃在HMX体系下中安全应用,在此 研究了α-AlH₃及包覆后复合材料与HMX混合体系的 相容性,图9和表2为α-AlH₃及改性后的材料与HMX 混合体系相容性测试和评价结果。图9a中显示,混合 体系的DSC曲线出现2个峰,在185℃左右为α-AlH₃

图 7 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料在5,10,15,20 ℃・min⁻¹下的 DSC 曲线 **Fig.7** The DSC curves of α-AlH₃ composites coated with silane coupling agents of different functional groups at different heating rates (5, 10, 15, 20 ℃・min⁻¹)

图 8 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料的1000/T_P~log(β)图和热分解活化能值 **Fig.8** 1000/T_P~log(β) profiles and E_a values of α-AlH₃ composites coated with silane coupling agents of different functional groups

的释氢吸热峰,285 ℃左右为HMX的分解放热峰。纯 HMX在192 ℃左右出现1个晶型转变的吸热峰,在混 合体系中未观察到,可能是与α-AlH₃的释氢分解峰合 并而不再显现。图9b与图9c中可以看出KH550包覆 改性可以使α-AlH₃与HMX混合体系的活化能 E_a 值提 升4.47 kJ·mol⁻¹,说明KH550包覆改性可以有效提高 α-AlH₃与HMX混合体系的热稳定性。表 2中的数据 显示α-AlH₃-KH550与HMX之间的温差最小,且Δ E/E_a 值小于20%,相容性最好。这是因为KH550包覆后使

图 9 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料与HMX 的相容性测试

Fig.9 Compatibility test of HMX and α -AlH₃ composites coated with silane coupling agents of different functional groups

CHINESE JOURNAL OF ENERGETIC MATERIALS

α-AlH₃表面带有大量的氨基,氨基与HMX中的硝基 容易形成氢键,断裂氢键会吸收部分热量,KH550形 成的包覆层阻断了中间产物的直接接触,降低了混合 体系在加热过程中发生反应的剧烈程度,使体系的相 容性从3级提升至1级。另外,带有丙烯酸甲酯基官 能团的KH570包覆同样使α-AlH₃与HMX混合体系的 相容性从3级提升至1级。

CL-20是当前可批量生产的能量密度最高含能化 合物,在军事、民用等多个领域有着广阔的应用前 景^[27-28]。图10和表3显示了α-AlH₃及复合材料与 CL-20混合体系相容性的测试和评价结果,从图10a 中可以看出混合体系的DSC曲线出现2个峰,其中

表 2 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料与HMX 相容性结果

Table 2 Compatibility results of α -AlH₃ composites coated withsilane coupling agents of different functional groups and HMX

samples	$\Delta T_{\rm P}$ / °C	$\Delta E/E_{\rm a}$ / %	compatibility level
α -AlH ₃ +HMX	2.1	0.13	3
α-AlH ₃ -KH550+HMX	-1.2	6.64	1
α -AlH ₃ -KH560+HMX	2.1	3.02	3
α -AlH ₃ -KH570+HMX	-1.9	8.82	1
α-AlH ₃ -KH580+HMX	2.5	6.96	3

Note: ΔT_p is the peak temperature change of a single system relative to mixed system; $\Delta E/E_a$ is the *E* change of a single system relative to mixed system.

图10 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料与CL-20 的相容性测试

Fig.10 Compatibility test of CL-20 and α -AlH₃ composites coated with silane coupling agents of different functional groups

表3 不同官能团型硅烷偶联剂包覆改性α-AlH₃材料与CL-20 相容性结果

Table 3 Compatibility results of α -AlH₃ composites coated with silane coupling agents of different functional groups and CL-20

camples	$\Delta T_{\rm P}$	$\Delta E/E_{a}$	compatibility
sampies	/ °C	/ %	level
α -AlH ₃ +CL-20	3.6	21.42	4
α-AlH ₃ -KH550+CL-20	-1.9	8.08	1
α-AlH ₃ -KH560+CL-20	3.6	2.01	3
α-AlH ₃ -KH570+CL-20	3.5	1.52	3
α-AlH ₃ -KH580+CL-20	4.3	9.81	3

Note: ΔT_p is the peak temperature change of a single system relative to mixed system; $\Delta E/E_a$ is the *E* change of a single system relative to mixed system.

180 ℃左右的峰为α-AlH₃的释氢吸热峰,在250 ℃左 右的峰为CL-20的分解放热峰。表3为硅烷偶联剂包 覆α-AlH₃前后与CL-20的相容性计算结果,根据GJB 772A-97方法502.1^[25]中规定CL-20/α-AlH₃混合体系 相容性等级为4级,相容性差,KH550包覆后,CL-20/ α-AlH₃-KH550体系相容性等级为1级。这是由于 CL-20表面硝基数量较多,与α-AlH₃-KH550表面的氨 基形成氢键的数量多,氢键的作用使保护膜隔热效果 变好,对混合体系在加热过程中热分解延迟的作用较 强,进而使体系的相容性变好。

3 结论

(1)选用4种不同官能团型硅烷偶联剂包覆改性 α-AlH₃,通过XRD、FT-IR、XPS和SEM对包覆改性前后 α-AlH₃的结构和形貌进行表征,结果表明硅烷偶联剂 形成的包覆层较均匀,包覆效果较好,未改变本体材料 的结构。

(2)KH580包覆改性后的α-AlH₃热稳定性明显提升。实验结果表明其热分解温度的峰值右移1.7 ℃,活化能 E₃值增加2.21 kJ·mol⁻¹。

(3)使用KH550和KH570分别包覆改性α-AlH₃,
 可使其与HMX相容性提升,相容性等级分别由3级提升至1级。

(4)使用 KH550 包覆改性 α-AlH₃可使其与 CL-20 相容性明显提升,相容性等级由 4 级提升至 1 级。

参考文献:

- GRAETZ J, REILLY J J, YARTYS V A. Aluminum hydride as a hydrogen and energy storage material: Past, present and future[J]. *Journal of Alloys and Compounds*, 2011, 509 (suppl) : 517–528.
- [2] YU M, ZHU Z, LI H, et al. Advanced preparation and processing techniques for high energy fuel AlH₃[J]. *Chemical Engineering Journal*, 2021, 421(Part 1):129753.
- [3] Brower F M, Matzek N E, Reigler P F. Preparation and properties of aluminum hydride [J]. *Journal of the American Chemical Society*, 1976, 98(9):2450–2453.
- [4] 姚小龙,曹一林,何金选.固体推进剂高能燃料三氢化铝[J].含能材料,2004,12(z1):161-165.
 YAO Xiao-long, CAO Yi-lin, HE Jin-xuan. Aluminum hydride high energy fuel of solid propellant[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2004,12(z1):161-165.
- [5] DELUCA L T, GALFETTI L, SEVERINI F, et al. Physical and ballistic characterization of AlH₃-based space propellants [J]. Aerospace Science and Technology, 2007, 11(1):18-25.
- [6] ISMAIL I M K, HAWKINS T. Kinetics of thermal decomposition of aluminium hydride: I-non-isothermal decomposition under vacuum and in inert atmosphere (argon) [J]. *Thermochimica Acta*, 2005, 439(1):32–43.
- [7] KEMPA P B, THOME V, HERRMANN M. Structure, chemical and physical behavior of aluminum hydride[J]. *Particle & Particle Systems Characterization*, 2009, 26(1):132-137.
- [8] PARK M, KIM W, KWON Y, et al. Wet synthesis of energetic aluminum hydride [J]. Propellants, Explosives, Pyrotechnics, 2019,44(10):1233-1241.
- [9] PARK M, KIM W, KWON Y, et al. Textural analysis of aluminum hydride[J]. *Journal of Industrial and Engineering Chemistry*, 2020, 90: 305-311.
- [10] 李磊,程新丽,牛菲,等. AlH₃/GAP 混合体系的热解特性[J]. 含能材料,2014,22(6):762-766.
 LI Lei, CHENG Xin-li, NIU Fei, et al. Pyrolysis characteristic of AlH₃/GAP system [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2014,22(6):762-766.
- [11] TARASOV V P, MURAVLEV Y B, BAKUM S I, et al. Kinetics of formation of metallic aluminum upon thermal and photolytic decomposition of aluminum trihydride and trideuteride as probed by NMR [J]. *Doklady Physical Chemistry*, 2003, 393 (4-6):353-356.
- [12] XU B, LIU J, WANG X. Preparation and thermal properties of

aluminum hydride polymorphs[J]. *Vacuum*, 2014, 99:127–134.

- [13] YOUNG G, RISHA G A, CONNELL T L, et al. Combustion of HTPB based solid fuels containing metals and metal hydrides with nitrous oxide [J]. Propellants, Explosives, Pyrotechnics, 2019.44(6).744-750.
- [14] YU M, XIE W, ZHU Z, et al. Stability, reactivity and decomposition kinetics of surface passivated $\alpha\text{-AlH}_3$ crystals[J]. International Journal of Hydrogen Energy, 2022, 47(14), 8916-8928.
- [15] Roberts C B, Toner D. Stabilization of light metal hydride: USP 3803082A[P],1974.
- [16] NORMAN E M, ROEHRS H C. Stabilization of light metal hydride:USP 3857922A[P],1974.
- [17] 朱朝阳,夏德斌,王平,等.固相转晶法法制备α-AlH,及其稳定 化[J]. 固体火箭技术,2019,42(1):60-65. ZHU Zhao-yang, XIA De-bin, WANG Ping, et al. Preparation of $\alpha\text{-AlH}_3$ via solid-state and vacuum crystal transformation method and its stabilization [J]. Journal of Solid Rocket Technology, 2019, 42(1):60-65.
- [18] 王艳群,王宝山,李伟. 硝化甘油在 α-Al₂O₂(0001)和 γ-Al₂O₂ (110)表面吸附的理论计算[J]. 高等学校化学学报, 2017, 38 $(8) \cdot 1383 - 1389.$ WANG Yan-qun, WANG Bao-shan, LI Wei. Theoretical investigation on the adsorption of nitroglycerin on α -Al₂O₃ (0001) and γ -Al₂O₃ (110) surfaces [J]. Chemical Journal of Chinese Universities, 2017, 38(8): 1383-1389.
- [19] 秦明娜,张彦,唐望,等.硬脂酸包覆的α-AlH₃制备及其静电感 度[J]. 含能材料,2017,25(1):59-62. QIN Ming-na, ZHANG Yan, TANG Wang, et al. α -AlH₃ coated with stearic acid: preparation and its electrostatic sensitivity [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(1): 59-62.
- [20] 吉祥波,鲜晓斌,唐贤臣,等. 硅烷偶联剂 KH550 对 Parylene C 膜与金属铝基体结合强度的影响[J]. 高分子材料科学与工程, 2012,28(3):57-59.

JI Xiang-bo, XIAN Xiao-bin, TANG Xian-chen, et al. Influence

of KH550 silane coupling agents on adhesive properties of Parylene C film to aluminum substrates[J]. Polymer Materials Science and Engineering, 2012, 28(3): 57-59.

- [21] 殷榕灿,张文保. 硅烷偶联剂的研究进展[J]. 中国科技信息, $2010(10) \cdot 44 - 46$. YING Rong-can, ZHANG Wen-bao. Production situation and research of silane coupling agents[J]. China Science and Technology Information, 2010(10): 44-46.
- [22] 徐溢, 王楠, 张晓凤, 等. 直接用作金属表面新型防护涂层的硅烷 偶联剂水解效果分析[J]. 腐蚀与防护,2000,21(4):157-159. XU Yi, WANG Nan, ZHANG Xiao-feng, et al. Analysis of silane hydrolysis reaction for new corrosion resistant coating on metallic surface[J]. Corrosion & Protection, 2000, 21(4):157-159.
- [23] RUSSELL R J. Siloxane-coated ammonium perchlorate and propellant compositions made therewith:USP 4124418A[P],1978.
- [24] 朱登攀.改善硝基胍发射药低温性能的工艺研究[D].南京:南 京理工大学,2017.

ZHU Deng-pan. Study on improving the performance of nitroguanidine propellant by process improvement at low temperature[D]. Nanjing: Nanjing University of Science and Technology,2017.

- [25] 国防科学技术工业委员会. GJB772A-1997: 炸药试验方法 [S]. 北京: 中国标准出版社, 1997. Technology and Industry for National Defense. GJB 772A-97: Explosive Test Method[S].Beijing: China Standard Press, 1997.
- [26] ZHU Z, XIA D, LI Y, et al. Synthesis and hydrogen desorption properties of nanoscale α -AlH₃[J]. Russian Journal of Physical Chemistry A. 2020.93(13) • 2798-2803.
- [27] HUANG B, XUE Z, CHEN S, et al. Stabilization of ε-CL-20 crystals by a minor interfacial doping of polydopamine-coated graphene oxide[J]. Applied Surface Science, 2020, 510(C): 145454.
- [28] LV J, WU Q, ZHOU Z-P, et al. Bionic functional layer strategy to construct synergistic effect-based high-safety CL-20@PDA@GO core-shell-shell structural composites[J]. Journal of Alloys and Compounds, 2022, 924: 166494.

Silane Coupling Agent Modified α -AlH₃ Materials Preparation and their Compatibility with HMX and CL-20

SHI Zhe¹, TAN Qi², WANG Xu-wen¹, LU Tao-jie¹, ZHANG Jian¹, ZHU Zhao-yang³, XIA De-bin¹, LIN Kai-feng¹, YANG Yu-lin

(1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; 2. Higher Education Press Co., Ltd, Beijing 100020, China; 3. Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China)

Abstract: In order to enhance the compatibility of α -AlH₃ with HMX and CL-20, silane coupling agents with different organic functional groups were used to coat α -AlH₄. The structure and morphology of α -AlH₃ were characterized by X-ray diffractometry (XRD), infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the compatibility of α -AlH₃ and modified materials with HMX and CL-20 were investigated, respectively. The results showed that the silane coupling agent could form a uniform cladding layer on the surface of α -AlH₃ without changing its native structure. γ -thiopropyl triethoxysilane (KH580) coating improves the thermal stability of α -AlH₃, increases the maximum thermal decomposition temperature by 1.7 $^{\circ}$ C and increases the activation energy E_a value by 2.21 kJ·mol⁻¹. After the modification of KH550 and KH570, the compatibility of α -AlH₃ and HMX hybrid system increased from level 3 to level 1. After the modification of KH550, the compatibility of α -AlH₃ and CL-20 mixed system is increased from level 4 to level 1.

Key words: solid propellant; modified α -AlH₃; silane coupling; HMX; CL-20; compatibility

CLC number: TJ55;V512

DOI: 10.11943/CJEM2023081 Document code: A Grant support: Open fund for the key Laboratory of Aerospace Chemical Power Technology (STACPL220181B04)

(责编:高毅)