文章编号:1006-9941(2023)06-0539-07

$MXene/Cd(N_3)_2$ 复合薄膜起爆药的制备及性能研究

张 蕾,卫春强,王燕兰,褚恩义,陈建华

(陕西应用物理化学研究所应用物理化学国家级重点实验室,陕西 西安710061)

摘 要: 针对深空复杂应用环境对火工品耐高温起爆药的迫切需求,通过静电相互作用的表面自组装方式构建了一种 MXene基叠氮化镉(MXene/Cd(N₃)₂)复合薄膜耐高温起爆药。采用扫描电镜、X射线能谱、X射线衍射以及红外光谱对 MXene/Cd(N₃)₂复合薄膜起爆药的微观形貌及结构进行表征;通过差示扫描量热及热重等分析方法研究其热性能,并采用高速摄影记录其爆轰过程。结果表明:MXene纳米材料表面丰富的官能团可使 Cd(N₃)₂在 MXene 片层上分布均匀,粒径约 50 nm,且在较大空隙中无沉积堆叠现象;MXene纳米材料的高比表面积和优异的导热性能可有效促进 Cd(N₃)₂的热分解,热分解温度为 378.42 ℃;MXene 纳米材料与 Cd(N₃)₂复合不会影响 Cd(N₃)₂的晶型及输出威力,制备所得的 MXene/Cd(N₃)₂复合薄膜起爆药以较少的药量即可实现点火起爆。 关键词:MXene;叠氮化镉;复合薄膜;起爆药

中图分类号: TJ55; O64

文献标志码:A

DOI: 10.11943/CJEM2023045

0 引言

火工品作为武器装备中的首发单元,其安全性可 靠性直接影响武器系统的安全性和可靠性^[1-3]。随着 武器装备应用环境的日趋复杂恶劣,其对火工品的环 境适应性要求也愈发严格^[4-6]。起爆药作为火工品起 爆的核心能源,如何设计满足武器装备复杂高温环境 应用需求的耐高温起爆药剂成为火工品亟待解决的问 题之一。

叠氮化镉(Cd(N₃)₂)是一种新型耐高温起爆药, 由陕西应用物理化学研究所盛涤纶研究员于 2015年 首次设计合成^[9],其热分解温度可达 369 ℃,爆炸温度 达到 417~426 ℃,是一种性能优异的耐高温起爆药。 但是其微观结构呈棱形片状,粒径为 30~60 μm,导致 其使用性能还有待进一步提高。本课题组通过优化制 备工艺,发现通过调整制备工艺参数可优化 Cd(N₃)₂ 的微观结构,其耐高温性能得到进一步优化,但是如何 解决 Cd(N₃)₂粒径分布不匀的问题从而进一步加强其

收稿日期: 2023-03-10;修回日期: 2023-04-20

网络出版日期: 2023-06-05

作者简介:张蕾(1986-),女,高级工程师,主要从事微纳结构含能 材料及火工品安全性研究研究。e-mail:ggy628@163.com 起爆可靠性成为Cd(N₃),合成的难点问题。

MXene 是一种典型的二维纳米材料,其结构通式 为 $M_{n+1}X_nT_x(n=1,2,3)$,其中M代表过渡金属(Ti、Ta、 Nb、V、Mo),X代表C或N,T_x代表表面基团,例如: -O,-OH,-CI或-F等^[10-12]。MXene材料通常采 用化学液相蚀刻MAX陶瓷相中A层来制备,多呈现典 型的多层手风琴状结构,层与层之间具有较大的空隙, 层表面具有丰富的官能团,且具有良好的亲水性,极易 与其他材料复合^[13-16];此外,MXene材料还具备优异 的导电性能、高比表面积和高电化学性能^[17-20]等特 性,目前已被广泛应用于能量存储、有机分子吸附、光 催化等领域^[21-25]。

因此,本研究将MXene纳米材料引入耐高温起爆 药Cd(N₃)₂的复合制备中,借助MXene纳米材料的大 比表面积和较高的表面能,通过静电相互作用的表面 自组装方式构建了一种新型MXene/Cd(N₃)₂复合薄 膜起爆药。采用扫描电镜(SEM)、X射线能谱(EDS)、 X射线衍射(XRD)以及红外光谱(FTIR)对MXene/Cd (N₃)₂复合薄膜起爆药的微观形貌及结构进行表征;通 过差示扫描量热(DSC)及热重(TG-DTG)等分析方法 探究其热性能,并采用高速摄影验证其爆轰过程,通过 试验结果评估MXene/Cd(N₃)₂复合薄膜起爆药的 性能。

引用本文:张蕾,卫春强,王燕兰,等. MXene/Cd(N₃)₂复合薄膜起爆药的制备及性能研究[J]. 含能材料,2023,31(6):539-545. ZHANG Lei, WEI Chun-qiang, WANG Yan-lan, et al. Preparation and Performance of a novel film Primary Explosive of MXene/Cd(N₃)₂[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2023,31(6):539-545.

1 实验部分

1.1 试剂与仪器

试剂:钛碳化铝(Ti₃AlC₂),400目,苏州北科纳米 科技有限公司;氢氟酸(HF),40%,北京伊诺凯科技有 限公司;乙醇(EtOH),成都市科隆化学品有限公司;四 水合硝酸镉(Cd(NO₃)₂·4H₂O),上海皓鸿生物医药科 技有限公司;叠氮化钠(NaN₃),中国医药集团有限公 司;去离子水(H₂O),陕西应用物理化学研究所自制 等,所用试剂均为分析纯。

仪器:恒温油浴反应釜(上海一凯仪器设备有限公司)、恒温水浴反应釜(上海一凯仪器设备有限公司)、 集热式磁力搅拌器(巩义市予华仪器责任有限公司, DF101S),离心机(湘潭湘仪仪器有限公司, TG16-WS),冷冻干燥机(宁波新芝生物科技股份有限 公司,SCIENTZ-10N),FS-550T超声破碎仪(上海生析 超声仪器公司),Tecnai G2 F30型扫描电子显微镜 (美国FEI),INCA-300 X射线能谱仪(英国牛津),D8 advance X射线衍射仪(德国 BRUKER),Spectrum 3 傅里叶变换红外光谱仪(美国 Perkin Elemer), DSC204F1 差示扫描量热仪(德国 NETZSCH),STA449F3同步热分析仪(德国 NETZSCH),PWS4602 直流电源(美国 Tektronix),Phantom VEO710高速摄 影仪(美国 Vision Research)。

1.2 实验过程

1.2.1 MXene 的制备

称量2gTi₃AlC₂粉末加入聚四氟乙烯烧杯中,放 入磁子。量取20mL质量分数40%的HF溶液,缓慢 加入聚四氟乙烯烧杯中。将烧杯放置于油浴反应釜 中,加热温度设置为55℃,磁子转速300r·min⁻¹,刻 蚀时间95h。待反应完毕,使用去离子水反复冲洗至 pH=6~7,然后通过离心得到黑色沉积物。将黑色沉 积物倒入塑料培养皿中,通过冷冻干燥得到刻蚀后的 粉体MXene。

1.2.2 MXene/Cd(N₃)₂复合薄膜起爆药的制备

制备过程如图1所示。首先取一定质量 MXene 在去离子水溶液中超声分散30 min待用,然后配置质 量分数为20%的四水合硝酸镉(0.15 mol)水溶液 20 mL,将其置于水热反应釜中,水浴温度设置为 55 ℃;待温度恒定后,在搅拌下缓慢加入 MXene分散 液及叠氮化钠(0.30 mol)水溶液,缓慢搅拌使其充分 反应;最后通过过滤、干燥,即可得到粒度均匀、分散均

图 1 MXene/Cd(N₃)₂复合薄膜起爆药的合成过程示意图 **Fig.1** Schematic diagram for the synthesis process of MXene/ Cd(N₃)₂ composite films

匀的 MXene/Cd(N₃)₂复合薄膜起爆药。具体反应如 式(1)~(4) 所示:

$Ti_{3}AIC_{2} + 3HF = AIF_{3} + 3/2H_{2} + Ti_{3}C_{2}$	(1)
$\mathrm{Ti}_{3}\mathrm{C}_{2} + 2\mathrm{H}_{2}\mathrm{O} = \mathrm{Ti}_{3}\mathrm{C}(\mathrm{OH})_{2} + \mathrm{H}_{2}$	(2)
$Ti_3C_2 + 2HF = Ti_3C_2F_2 + H_2$	(3)
$C d(NO_3)_2 + 2NaN_3 = C d(N_3)_2 + 2NaNO_3$	(4)
1.2.3 性能表征与测试	

采用扫描电子显微镜表征 MXene/Cd(N₃)₂复合 薄膜起爆药的微观形貌,测试电压 15 kV。

采用 X 射线衍射仪表征 MXene/Cd(N₃)₂复合薄 膜起爆药的组分,测试电压 40 kV,电流 40 mA,扫描 步长 0.02°,收集 2 θ 在 10°~100°之间的衍射数据;

采用差示扫描量热仪测试 MXene/Cd(N₃)₂复合 薄膜起爆药的热分解性能,试验温度 25~500 ℃,升温 速率 10 ℃·min⁻¹,以流速为 10 mL·min⁻¹的氩气保护。

采用同步热分析仪测试 MXene/Cd(N₃)₂复合薄 膜起爆药的热性能,试验温度 25~600 ℃,升温速率 10 ℃·min⁻¹,以流速为 50 mL·min⁻¹的氩气保护,试样 量 1 mg 左右。

采用 Phantom VEO710 高速摄影机拍摄并记录 爆轰过程,将 MXene/Cd(N₃)₂复合薄膜起爆药接入电 爆炸性能测试系统,装药量为2 mg,拍摄速率为 2000000 fps。

为进一步验证MXene/Cd(N₃)₂复合薄膜起爆药的 爆轰输出性能,依照国军标GJB5309.17-2004(K)火工 品试验方法,设计如图2所示的测试装置进行测试,其 中,换能元选用Ni-Cr桥,电阻为3.5Ω,MXene/Cd(N₃)₂

图2 MXene/Cd(N₃),复合薄膜起爆药输出性能测试结构 **Fig.2** Output performance test structure of MXene/Cd $(N_3)_2$ composite films

装药量为5mg,传爆药选用CL-20进行性能验证, CL-20装药量为20mg,装药密度为1.8g·cm⁻³;CL-20 与MXene/Cd(N₃),采用面-面接触方式起爆,爆轰输出 采用铝鉴定块鉴定。

MXene/Cd(N₃),复合薄膜起爆药的结构表征

采用SEM对制备所得MXene、MXene/Cd(N₃),复

2 结果与讨论

2.1

为进一步研究 MXene/Cd(N₃),复合薄膜起爆药的

图 3 MXene, MXene/Cd(N₃)₂, Cd(N₃)₂的微观结构图及MXene/Cd(N₃)₂能谱图 **Fig.3** SEM images of MXene, MXene/Cd(N_3), and Cd(N_3), and EDS spectra of MXene/Cd(N_3),

性能,采用XRD和FTIR对其进行成分分析,结果如图4 所示。由图 4a 可看出,与Cd(N_3),相比,MXene/Cd(N_3), 复合薄膜起爆药的XRD衍射峰出峰位没有发生明显 变化,只有在 $2\theta=30.97^{\circ}$ 和 50.43°处的衍射峰稍有变 宽,强度变弱,分析原因主要是MXene/Cd(N₃),复合 薄膜结构起爆药中,Cd(N₃),的粒径由微米级变为纳 米级,粒径变小,且粒径分布均匀。图4b显示了 MXene/Cd(N₃),复合薄膜起爆药的红外光谱图,从 图 4b 中可看出,位于 3396.97 cm⁻¹附近的宽峰对应于 MXene的一OH伸缩振动,位于1628.26,1384.36 cm⁻¹ 和 992.88 cm⁻¹ 处的峰分别对应于 MXene 的 C=O, O-H和C-F的伸缩振动;在 2099.27 cm⁻¹和 2141.95 cm⁻¹处观察到出峰为N-N叠氮根的典型不 对称伸缩振动峰,614.86 cm⁻¹和624.77 cm⁻¹处为叠 氮化物的对称振动峰。表征结果表明,MXene/Cd(N₃)。 复合薄膜起爆药中的主要成分为Cd(N₃)₂,且MXene 与Cd(N₃),复合不会改变Cd(N₃),的晶型,制备所得 薄膜结构起爆药的复合结构良好。

2.3 MXene/Cd(N₃),复合薄膜起爆药的热分解性能 测试

采用差示扫描量热法对 MXene/Cd(N₃),复合薄

图4 MXene/Cd(N₃),复合薄膜的 XRD 及 FTIR 图谱 **Fig.4** XRD pattern and FTIR spectra of MXene/Cd $(N_3)_2$ composite films

Chinese Journal of Energetic Materials, Vol.31, No.6, 2023 (539-545)

膜起爆药以及Cd(N₃)₂起爆药进行热性能测试。测得 的DSC曲线如图5所示。

图5 MXene/Cd(N₁),复合薄膜起爆药及Cd(N₁),的DSC图谱 Fig. 5 DSC curves of MXene/Cd $(N_3)_2$ composite films and $Cd(N_3)_2$

对比复合MXene前后的Cd (N_3) ,放热峰可看出, Cd(N₃)₂的热分解温度为 383.75 ℃, MXene/Cd(N₃)₂ 复合薄膜的热分解温度为378.42℃,即表明由于 MXene 的加入, 使得 $Cd(N_3)$, 的热分解温度稍有提前; 同时,MXene/Cd(N₃),复合薄膜起爆药的热分解速率 明显快于Cd(N₃),这主要是由于其结构中MXene与 $Cd(N_3)$,呈层状复合,且 $Cd(N_3)$,的微观粒径明显减 小,导致内部热点传播速率加快,宏观上表现为热分解 速率加快,即可说明,MXene的复合对Cd(N₃),的热分 解速率有明显的促进作用。

采用同步热分析仪(TG-DTA)对MXene/Cd(N₃)。 复合薄膜起爆药进行热分解性能测试,测试结果如 图 6 所示。由图 6 可看出,150~350 ℃区间内,TG曲 线显示重量有0.5%左右的缓慢降低,这主要是因为 MXene 表面官能团在高温下被逐渐去除;样品在 360~390 ℃之间有明显质量损失,对比DSC分析可 知,此阶段为Cd(N₃),的热分解阶段。当温度加热到 400℃之后,失重量随温度的升高基本不再发生变化,

图6 MXene/Cd(N₃),复合薄膜起爆药的TG-DTG曲线 **Fig.6** TG-DTG curves of MXene/Cd $(N_3)_2$ composite films

结果表明, MXene的层状结构复合不会影响 $Cd(N_3)_2$ 的热稳定性。

2.4 MXene/Cd(N₃)₂复合薄膜起爆药的爆轰过程测试 采用Phantom VEO710高速摄影机对Mxene/Cd(N₃)₂ 复合薄膜起爆药的爆轰过程进行观测。图7所示为 高速摄影检测其电起爆过程的照片部分截图。从 被 Ni-Cr 换能元成功起爆, 且发生明显的爆炸现象, 电 起爆作用过程快速。换能元将 2 mg的 Mxene/Cd(N₃)₂ 引爆后在间隔 80 μs 左右可看到明亮的火光, 150 μs 左右爆轰产物开始脱离电起爆桥区呈散射 状向四面散开, 整个过程持续约 800 μs。电起爆产 生的爆轰产物溅射现象对于起爆药的起爆可靠性 十分有利。

图7 Mxene/Cd(N₃),复合薄膜起爆药的爆轰过程图

Fig.7 Detonation process pictures of Mxene/Cd $(N_3)_2$ composite films

2.5 MXene/Cd(N₃)₂复合薄膜起爆药的输出性能测试 MXene/Cd(N₃)₂复合薄膜起爆药起爆 CL-20 药柱 后的效果如图 8 所示。为确保起爆后炸药爆轰所产生 的爆轰波能沿轴向可靠性传递,起爆序列测试夹具的 四周采用螺钉固定。输入电压分别为 15,20,25 V。 从测试结果可看出,不同输入条件下,MXene/Cd(N₃)₂ 复合薄膜起爆药在 Ni-Cr 桥作用下均能起爆 CL-20 药 柱,并在铝鉴定块上形成明显的凹痕,凹痕深度平均值 为 2.04 mm,依据国军标测试方法,MXene/Cd(N₃)₂

图 8 MXene/Cd(N₃)₂复合薄膜输出性能测试结果 Fig.8 Output performance test result of MXene/Cd(N₃)₂ composite films

复合薄膜起爆药以较少的药量即可正常起爆,并可实现微爆炸序列的正常传爆,结果表明MXene/Cd(N₃)₂ 复合薄膜起爆药起爆性能良好。

3 结论

(1)通过静电相互作用的表面自组装方式构建了 一种新型MXene/Cd(N₃)₂复合薄膜起爆药,该薄膜结 构起爆药呈纳米片层结构分布。

(2)借助 MXene 纳米材料层表面丰富的官能团, Cd(N₃)₂在 MXene 片层上分布均匀,且在较大空隙中 无沉积堆叠;借助 MXene 纳米材料的层状复合, Cd(N₃)₂的微观粒径明显减小,内部热点传播速率加 快,有效促进了 Cd(N₃)₂的热分解速率,且不影响其热 稳定性。

(3) MXene 纳米材料与 Cd(N₃)₂复合不会影响 Cd(N₃)₂的晶型及输出性能,制备所得 MXene/Cd(N₃)₂ 复合薄膜起爆药的复合结构良好,且以较少的药量即 可实现点火起爆。

参考文献:

- [1] 阚文星,褚恩义,刘卫,等.微起爆系统用MEMS安全保险装置研究现状与展望[J].含能材料,2022,30(1):78-94.
 KAN Wen-xing, CHU En-yi, LIU Wei, et al. A review on MEMS safety and arming devices for micro-initiation system
 [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2022,30(1):78-94.
- [2] 顾伯南,徐建勇,石伟,等. 电火工品换能元增效技术研究进展
 [J]. 含能材料, DOI:10.11943/CJEM2022216.
 GU Bo-nan, XU Jian-yong, SHI Wei, et al. Research progress on efficiency improvement of electrical initiator transducers
 [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), DOI:10.11943/CJEM2022216.
- [3] 张彬,褚恩义,任炜,等. MEMS火工品换能元的研究进展[J]. 含能材料, 2017, 25(5):428-436.
 ZHANG Bin, CHU En-yi, REI Wei, et al. Research progress in energy conversion components for MEMS initiating explosive device [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(5):428-436.
- [4] 中国人民解放军总装备部.GJB 150-2009 军用装备实验室环境 试验方法[S].北京:国防科工委军标出版.发行部,2009.
 General furnishment ministry of people's liberating army of China. GJB 150-2009 Laboratory environmental test methods for military materiel[S].2009.
- [5] SHADRAVAN A, AMANI M. HPHT 101-what every enigineer or geoscientist should know about high pressure high temperature wells [C]//SPE Kuwait Internationnal Petroleum Conference and Exhibition.Society of Petroleum Engineers, 2012.
- [6] 潘鹏阳,王可欣,易镇鑫,等. 起爆药研究最新进展[J]. 含能材料,2021,29(6):557-566.
 PAN Peng-yang, WANG Ke-xin, YI Zhen-xin, et al. Recent advances in primary explosives[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao),2021,29(6):557-566.
- [7] LIU Lijuan, SHENG Dilun, ZHU Yahong, et al. Thermostable performance research of disilver 5-amino-1H-tetrarolium perchlorate[J]. *Journal of Beijing Institute of Technology*, 2016, 25(1): 196-202.
- [8] 刘丽娟,刘斌. 几种起爆药的耐高温性能对比研究[J]. 火工品, 2021, 2:37-40.
 LIU Li-juan,LIU Bin. Study on high temperature resistance performance of some kinds of primary explosives[J]. *Initiators & Pyrotechnics*, 2021, 2:37-40.
- [9] 盛涤伦,陈利魁,朱雅红,等. 耐高温起爆药叠氮化镉的合成与性能研究[J]. 爆破器材,2015,44(3):12-15.
 SHENG Dilun, CHEN Likui, ZHU Yahong, YANG Bin. Synthesis and performance of a primary explosive resisting high temperature named cadmium azide [J]. *Explosive Materials*, 2015, 44(3):12-15.
- [10] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti₃AlC₂[J]. Advanced Materials, 2011, 23(37):4248-4253.
- [11] LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes [J]. Journal of Materials Chemistry A, 2019, 7(1): 269–277.
- [12] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th

Anniversary article: MXenes: a new family of two-dimensional materials [J]. *Advanced Materials*, 2014, 26 (7):992–1005.

- [13] ZHANG R, DONG J, ZHANG W, et al. Synergistically coupling of 3D FeNi-LDH arrys with Ti₃C₂T_x-MXene nanosheets toward superior symmetric supercapacitor [J]. *Nano-Energy*, 2022,91:106633.
- [14] SANG X H, XIE Y, LIN M W, et al. Atomic defects in monolayer titanium carbide $(Ti_3C_2T_x)$ MXene. *ACS Nano*, 2016, 10 (10):9193.
- [15] HANTANASIRISAKULK, ZHAO M Q, URBANKOWSKI P, et al. Fabrication of $Ti_3C_2T_x$ MXene transparent thin films with tunable optoelectronic properties[J]. *Advanced Electron Materials*, 2016, 2(6): 1600050.
- [16] LINPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti₃C₂ MXene flakes[J]. Advanced Electron Materials, 2016, 2(12): 1600255.
- [17] ZHANG C F, MCKEON L, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors [J]. *Nature Communication*, 2019, 10: 1795.
- [18] DE S, MAITY C K, SAHOO S, et al. Polyindole booster for $Ti_3C_2T_x$ MXene based symmetric and asymmetric supercapacitor devices [J]. ACS Applied Energy Materials, 2021, 4(4): 3712–3723.
- [19] WEN D, WANG X, LIU L, et al. Inkjet printing transparent and conductive MXene ($Ti_3C_2T_x$) films: A strategy for slexible energy storage devices [J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17766–17780.
- [20] ZHANG C F, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance [J]. Advanced Materials, 2017, 29(36):1702678:1-9.
- [21] DONG Y., SHI H., WU Z.S. Recent advances and promise of mxene-based nanostructures of high-performance metal ion batteries[J]. Advanced Functional Materials, 2020, 30(47): 202000706.
- [22] YAN J, REN C E, MALESKI K, et al. Flexible MXene/ graphene films for ultrafast supercapacitors with outstanding volumetric capacitance [J]. Advanced Functional Materials, 2017, 27 (30): 1701264:1–10.
- [23] CHEN X Z, KONG Z Z, LI N, et al. Proposing the prospects of Ti₃CN transition metal carbides (MXenes) as anodes of Li-ion batteries: A DFT study[J]. *Physical Chemistry Chemical Physics*, 2016, 18(48): 32937–32943.
- [24] PAN Z H, CAO F, HU X, et al. A facile method for synthesizing CuS decorated Ti₃C₂ MXene with enhanced performance for asymmetric supercapacitors[J]. *Journal of Materials Chemistry* A, 2019, 7(15):8984–8992.
- [25] MIN Y X, YUAN H, WANG W G, et al. Design of heterostructures of MXene/two-dimensional organic frameworks for Na-O₂ batteries with a new mechanism and a new descriptor
 [J]. The Journal of Physical Chemistry Letters, 2021, 12(11): 2742-2748.

Preparation and Performance of a novel film Primary Explosive of MXene/Cd(N₃)₂

ZHANG Lei, WEI Chun-qiang, WANG Yan-lan, CHU En-yi, CHEN Jian-hua

(Shaanxi Applied Physic-Chemistry Research Institute, State Key Laboratory of Applied Physics-Chemistry Research, Xi'an 710061, China)

Abstract: In view of the urgent demand for high-temperature resistant initiators for pyrogenic products in complex application environments in deep space, primary explosive based on composite films of $MXene/Cd(N_3)_2$ with high-temperature resistant was prepared by surface self-assembly of electrostatic interaction. The morphology and structure of the composite film primary explosive were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and infrared spectroscopy. The thermal properties were studied by differential scanning calorimetry and thermogravimetry, and the detonation process was recorded by high-speed photography. The results show that cadmium azide was evenly distributed on the MX-ene layer, and there was no deposition and stacking in the large gap. The introduction of MXene can effectively promote the thermal decomposition rate of cadmium azide. The combination of MXene material and cadmium azide didn't affect the crystal form and detonation performance of cadmium azide. The prepared MXene/Cd $(N_3)_2$ composite film primary explosive can realize ignition and detonation with less charge.

Key words:MXene; cadmium azide; composite film; primary explosiveCLC number:TJ55;O64Document code:

DOI: 10.11943/CJEM2023045

(责编:王馨逸)