文章编号:1006-9941(2017)03-0257-05

硝基胍溶液的热分解性能及动力学

陈莹莹¹,陈利平¹,陈网桦¹,董 泽^{1,2},薛倍倍¹,张 军¹,王 炎¹ (1. 南京理工大学化工学院安全工程系,江苏南京 210094; 2. 索尔维投资有限公司,上海 200000)

摘 要:硝基胍(NQ)在进行运输和储存时,通常采用水作稳定剂。为研究硝基胍加水后的热分解行为,借助差示扫描量热仪(DSC)研究了其在动态和等温条件下的分解情况。结果表明,硝基胍溶液在动态和等温模式下均显示一个放热峰,其平均比放热量分别为311 J·g⁻¹和305 J·g⁻¹。基于 Friedman 法计算得知动态模式下的活化能为84~78 kJ·mol⁻¹,等温模式下活化能为86~78 kJ·mol⁻¹,且数值变动很小;表明其热解过程可用单步机理描述。根据等温模式下的钟型放热速率曲线,判断其热分解属于单步自催化机理;进而采用包含引发反应的自催化模型,对等温数据进行非线性拟合得到了其分解反应速率表达式,且自催化机理的计算结果与动态 DSC 的实测数据一致性好,证明该模型可靠。

关键词: 硝基胍(NQ)水溶液; 动态模式; 等温模式; Friedman 法; 自催化机理

中图分类号: TJ55; O64

文献标志码:A

DOI: 10.11943/j.issn.1006-9941.2017.03.014

1 引 言

硝基胍(NQ)^[1-4]广泛应用于火炸药制造中,是 发射剂、推进剂和炸药的重要组分,也可作为机动车辆 或飞行器安全气囊的产气剂组分^[5]。同时硝基胍具 有一定燃爆危险性和毒性,受热、明火、摩擦、震动、撞 击时可发生爆炸,其高热下的分解将产生有毒的氮氧 化物^[6]。我国危险化学品名录将硝基胍分为第一类 (爆炸品),第一项(具有整体爆炸危险的物质和物 品)。硝基胍的制备属于间接硝化,被列入重点监管 危险化工工艺目录。

国内外学者针对其热分解特性展开了一系列研究。刘子如^[7]及Lee P P 等^[8]分别利用差示扫描量热 仪(DSC)和绝热量热仪(ARC)得到了硝基胍在动态 模式下和绝热模式下基本的热分解参数。Lee P P 和 Back M H^[9]证实了 DSC 实验样品池是否密闭、气氛 的不同都会对硝基胍热流曲线具有一定影响。李艳春 等^[10]提出硝基胍具有复杂的分解机理,并得到其分解 由三步连续反应组成。洪三国、傅孝愿^[11]用量子化学 方法研究了硝基胍热解反应的机理,提出硝基胍热解

收稿日期: 2016-06-24; 修回日期: 2016-09-26

作者简介:陈莹莹(1991-),女,硕士研究生,主要从事物质热分析及工 艺热风险评估研究。e-mail: CYY15850509526@163.com

通信联系人: 陈网桦(1968-), 男, 教授, 主要从事安全工程方面的教学 科研及燃料空气炸药的研究。e-mail: chenwanghua_nust@ sina. com

反应可经历两条相互竞争的途径,并认为其分解主产物为 $N_2O_NH_2O$ 和 NH_3 。刘子如等^[12]也得到硝基胍的分解会产生大量 $N_2O_NH_2O$ 及 $NH_3_NH_2N-NH_2$ 。 Volk $F^{[13]}$ 则检测到硝基胍的分解过程存在一种具有较高热安定性的中间产物嘧勒胺。

由于硝基胍的危险性,联合国危险物品运输专家 委员会^[14]建议其可加水后进行储存和运输。但目前 尚缺乏以硝基胍水溶液为研究对象的工作,因此探究 硝基胍水溶液的热分解行为,具有实用价值。

另一方面,是否具有自催化性质是研究物质分解 特性的一个重要方向。自催化性质指的是物质在分解 过程中的产物对其自身的反应具有催化加速的作 用^[15]。等温 DSC 实验通常被作为鉴别物质是否具有 自催化性质的一种有效手段。具有自催化性质的物 质,在等温条件下,其反应速率不会随着反应进程呈单 调递减趋势。而是经过一定时间的诱导期后,放热速 率随反应进程而增加,到达最大值后才下降,表现出一 个钟型的放热峰。由于具有此种性质的物质在诱导期 内的反应十分缓慢,难以觉察,容易被人们忽略;但反 应一旦被引发,便在较短时间内快速发生,且往往具有 较大的温度和压力效应,需要引起重视。

本研究利用动态和等温 DSC 研究硝基胍水溶液的热分解特性,采用无模型方法(Friedman 方法)对两种模式数据进行活化能求解,并利用活化能的求解结果作为物质反应机理是否单一的判据。由于等温

257

DSC 实验表明其分解反应具有自催化性质,进一步采 用一种将引发反应考虑在内的自催化模型,利用模型 拟合法计算硝基胍水溶液的分解反应动力学参数并进 行验证。

2 实验部分

2.1 试剂与仪器

仪器: 热通量型差示扫描量热仪(DSC-1), 瑞士 METTLER TOLEDO 公司生产。样品池均为带镀金垫 片的不锈钢高压坩埚, 耐压 15 MPa。

试剂:硝基胍,工业纯,辽宁庆阳化学工业公司。

2.2 实验条件

将一定量的硝基胍置于 DSC 坩埚中,滴加一定量 的沸水,使两者在高温下互溶^[6],设置动态 DSC 实验 升温速率为1,2,4,8 ℃ · min⁻¹,等温 DSC 实验温度 分别为112,114,120,124 ℃;动态及等温 DSC 试验 所用样品量分别见表1 和表2,由于加样困难,未能做 到被测试样高温下的浓度完全一致,但保持硝基胍质 量浓度在29.45% ~29.77%。两种模式下的实验,均 采用空坩埚做参比,氮气气氛,流速为50 ℃ · min⁻¹。

表1 动态 DSC 实验样品量

 Table 1
 Sample mass used in dynamic DSC experiments

β /°C · min ⁻¹	$M_{\rm NQ}/{ m mg}$	$M_{ m water}/ m mg$	C/%
1	2.94	7.04	29.46
2	2.93	6.97	29.60
4	2.93	7.02	29.45
8	2.93	7.02	29.45

Note: β is the heating rate, M_{NQ} is the mass of NQ, M_{water} is the mass of water, C is the mass percent of NQ.

表2 等温 DSC 实验样品量

Table 2	Sample	mass	used	in	isothermal	DSC	experiments
---------	--------	------	------	----	------------	-----	-------------

isothermal temperature/°C	M _{NQ} /mg	$M_{\rm water}/{ m mg}$	<i>C</i> /%
112	2.95	6.96	29.76
114	2.95	6.94	29.77
120	2.95	7.00	29.65
124	2.93	6.96	29.63

3 结果与讨论

3.1 硝基胍溶液动态 DSC 热分解特性

硝基胍溶液的动态 DSC 测试曲线见图 1。由图 1 可知,硝基胍溶液的动态 DSC 曲线存在一个分解放热 峰,起始分解温度较高(*T*_{onset}=149~185 ℃)。从图 1 可以看出随着升温速率增加,放热峰向高温区移动,起 始分解温度 *T*_{onset}和峰温 *T*_p升高,最大放热速率增加。 四次试验的平均比放热量约为 311 J·g⁻¹。

图1 硝基胍溶液动态 DSC 测试曲线

3.2 硝基胍溶液等温 DSC 热分解特性

在动态 DSC 实验的基础上,进行了等温 DSC 实验(等温实验温度分别为 112,114,120,124 ℃),如图 2 所示。结果显示硝基胍溶液的等温分解放热速率表现为钟型曲线,放热速率达到最大值后开始下降,表明硝基胍溶液的分解具有自催化性质(N级机理的物质在等温条件下,其放热速率随时间单调下降)^[15]。且随着等温温度的升高,反应程度愈发剧烈,等温诱导期缩短(112 ℃时等温诱导期为 255.76 min,114 ℃时等温诱导期为 190.28 min,120 ℃时等温诱导期为 116.45 min,124 ℃时等温诱导期为 75.48 min)。等温条件下分解反应平均比放热量为 305 J·g⁻¹,与动态 DSC 结果接近。

图 2 硝基胍溶液等温 DSC 测试曲线

Fig. 2 Isothermal DSC curves of NQ solution

3.3 硝基胍溶液动力学参数计算

3.3.1 硝基胍溶液动态 DSC 活化能

采用等转化率微分方法中的 Friedman 法,在不涉

及模式函数的情况下获取可靠的活化能。式(1)为 Friedman 方程^[16],由此可以得到每一个反应转化率 α 下的活化能 E_{α} 值。

$$\ln\left(\frac{\beta d\alpha}{dT}\right)_{\alpha} = \ln\left[f(\alpha)A_{\alpha}\right] - \frac{E_{\alpha}}{RT}$$
(1)

式中, β 为温升速率, \mathbb{C} ・min⁻¹; α 为转化率; A_{α} 为反应 转化率 α 下的指前因子, s^{-1} ; $f(\alpha)$ 为机理函数, E_{α} 为活化 能,kJ・mol⁻¹; R 为理想气体常数,8.314 J・mol⁻¹・K⁻¹; T为温度,K。

根据热分析动力学委员会的建议^[16]: Friedman 法求得的活化能曲线形状可以作为判断反应是否可用 单一速率方程描述的依据。放热开始和即将结束阶 段,活化能 E_{α} 值受基线影响很大,一般主要关注 0.1< $\alpha < 0.9$ 下的求解结果。图 3 中动态 DSC 模式下硝基 胍溶液的活化能值在 0.1< $\alpha < 0.9$ 时,活化能变化不大 (84~78 kJ·mol⁻¹),表明硝基胍溶液的热分解反应 可以用单一的速率方程来描述。

图 3 Friedman 法计算硝基胍溶液的活化能 Fig. 3 E_{α} of NQ solution (Friedman method)

3.3.2 硝基胍溶液等温 DSC 活化能

对于等温 DSC, Friedman 法方程见式(2):

 $\ln\left(\frac{d\alpha}{dt}\right)_{\alpha} = \ln\left[f(\alpha)A_{\alpha}\right] - \frac{E_{\alpha}}{RT}$

式(2)中($d\alpha/dt$)_a为反应速率, s⁻¹。其它符号的含义 同公式(1)。

求解结果见图 3。可见,硝基胍溶液等温模式下 活化能在 0.1<α<0.2 时出现较大变化,但在 0.2<α< 0.9 时,活化能变化较小(86~78 kJ·mol⁻¹),与动态 模式下求得的活化能非常接近,同样表明硝基胍溶液 分解反应可用单步反应速率方程描述。

3.3.3 硝基胍溶液动力学模型求解

上述研究显示,硝基胍溶液的分解反应属于单步 机理,且具有自催化特性,众所周知,S-B 模型^[17]是一

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = k\alpha^m \left(1 - \alpha\right)^n \tag{3}$$

式中,m,n为自催化模型的反应级数。

但是 S-B 模型忽略了自催化反应的引发反应,对 于强自催化的情况,这种忽略对动力学求解影响不大。 而对于弱自催化的情况,引发反应则不能被忽略。因 此采用将引发反应考虑在内的自催化模型^[17-20],即假 设该自催化反应包含(4)、(5)两个步骤。

B (initial stage) (4)

 $A+B\rightarrow 2B$ (autocatalytic stage) (5)

其中式(4)为引发反应,式(4)为具有自催化性质 的分解反应。于是得到反应速率如式(6)所示。该模 型已被证实能够更好地描述自催化反应,并被应用于 多种含能材料的分解反应动力学参数求解中。

$$\frac{d\alpha}{dt} = k_1 (1-\alpha)^{n_1} + k_2 \alpha^{n_2} (1-\alpha)^{n_1}$$
(6)

式中, k_1 和 k_2 分别为两步反应各自的速率常数; n_1 、 n_2 为自催化反应的反应级数。

基于上述公式,对4条等温 DSC 曲线分别进行非 线性 拟 合 计 算。本 研 究 利 用 MATLAB 软 件 的 lsqnonlin函数实现非线性拟合运算,将转化率和转化 率速率分别定义为自变量和应变量,并对 k_1 和 k_2 、 n_1 和 n_2 赋以初值 1,可得到每个温度下的 k_1 和 k_2 、 n_1 和 n_2 计算结果见表 3。结果表明拟合的相关系数很高, 且不同温度下得到的反应级数都很接近,其中 n_1 平均 值为 1.111, n_2 平均值为 1.995。基于阿仑尼乌斯速 率常数表达式(式(7)):

 $k = Ae^{-\frac{k}{R}}$ 式中, A 为指前因子, s⁻¹; E 为活化能, kJ·mol⁻¹。

表 3 等温 DSC	数据的非线性拟合计算结果
------------	--------------

Table 3 Nonlinear fitting results based on isothermal DSC data

isothermal temperature/℃	k ₁ /min ⁻¹	k ₂ /min ⁻¹	<i>n</i> ₁	<i>n</i> ₂	<i>R</i> ₂
112	0.00118	0.168	1.110	1.998	0.997
114	0.00134	0.186	1.135	2.004	0.996
120	0.00208	0.252	1.100	1.979	0.997
124	0.00303	0.319	1.100	2.000	0.994
mean value	-	-	1.111	1.995	-

将 ln*k*₁对 1/*T* 进行线性拟合(见图 4),得到活化能 *E*₁和 ln*A*₁分别为 92.17 kJ・mol⁻¹和 18.03 s⁻¹。同理得 到 *E*₂和 ln*A*₂分别为 76.40 kJ・mol⁻¹和 18.00 s⁻¹,相关数

(7)

含能材料

(2)

因此,硝基胍溶液的反应速率可以表示为: $\frac{d\alpha}{dt} = e^{18.03} e^{-\frac{92170}{RT}} (1-\alpha)^{1.111} + e^{18.00} e^{-\frac{76400}{RT}} \alpha^{1.995} (1-\alpha)^{1.111} (8)$

为了验证上述模型,采用获得的反应速率表达式 对动态 DSC 的测试结果进行计算和比较,结果如图 5 所示。图 5显示基于上述反应速率方程所得到的计算 结果与动态 DSC(1,2,4,8 ℃ · min⁻¹)实验的结果十 分吻合,证实了所得模型可以很好地描述硝基胍溶液 的热分解。

表 4 线性拟合 $(\ln k_1, 1/T)$ 、 $(\ln k_2, 1/T)$ 的计算结果

Table 4 Linear fitting results of $(\ln k_1, 1/T)$ and $(\ln k_2, 1/T)$

图 4 ln*k*-1/T曲线(计算 E₁、E₂和 lnA₁、lnA₂)

Fig. 4 $\ln k \cdot 1/T$ curves (caculated E_1 , E_2 and $\ln A_1$, $\ln A_2$)

isothermal temperature/℃	$\ln(k_1/s^{-1})$	E_1 /kJ·mol ⁻¹	$\ln(A_1/s^{-1})$	R_1^2	$\ln(k_2/s^{-1})$	E_2 /kJ·mol ⁻¹	$\ln(A_2/s^{-1})$	R_2^2
112	-10.837				-5.878			
114	-10.709	92.17	18.03	0.992	-5.776	76.40	18.00	0.997
120	-10.270				-5.473			
124	-9.893				-5.237			

图 5 模型拟合曲线和动态模式实验曲线

Fig. 5 Comparison of model curves with dynamic DSC data

4 结 论

(1)硝基胍水溶液的动态及等温 DSC 实验表明, 在动态模式下其起始分解温度较高(149~185 ℃), 平均比放热量约为311 J·g⁻¹;等温模式下溶液平均 比放热量约为305 J·g⁻¹,与动态结果非常接近。

(2) 基于 Friedman 法计算得到两种测试模式下 获得的活化能很接近,表明其分解反应可用单步的反 应速率描述。

(3)硝基胍水溶液的热分解为单步自催化反应,其分

解动力学模型为:

 $d\alpha/dt = \exp(18.03)\exp(-92170/RT)(1-\alpha)^{1.111} +$

 $\exp(18.00)\exp(-76400/RT)(1-\alpha)^{1.111}\alpha^{1.995}$,

该模型不仅可以准确描述其等温分解过程,同样可以 描述动态分解过程。

参考文献:

- [1] 段卫东, 吕早生. 硝基胍炸药的机械感度和爆炸性能研究[J]. 含能材料, 2003, 11(4): 209-212.
 - DUAN Wei-dong, LÜ Zao-sheng. Mechanical sensitivity and explosive performance of nitroguanidine(NQ)-based composite explosives[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2003, 11(4): 209–212.
- [2]魏学涛,赵颖,李乃勤,等. 新型硝基胍发射药研究[J]. 火炸药 学报, 2001 (4): 34-36.
 WEI Xue-tao, ZHAO Ying, LI Nai-qin, et al. The study on a new kind of Nitroguanidine propellant[J]. *Chinese Journal of Explosives and Propellants*, 2001 (4): 34-36.
- [3] 周诚,陈智群,黄新萍,等.硝基胍标准物质的制备及其均匀性和稳定性研究[J].化学分析计量,2009,18(5):4-6.
 ZHOU Cheng, CHENZhi-qun, HUANG Xin-ping, et al. Preparation of reference material of NQ and study of itshomogeneity and stability[J]. *Chemical Analysis and Meterage*, 2009, 18 (5):4-6.
- [4] 俞朝晖, 栾志杰. 硝基胍火药的热安定性研究[J]. 火炸药学报, 1996 (4): 14-16.

YU Zhao-hui, LUAN Zhi-jie. A Investigation of hermal Stability of Nitroguanidine Propellants[J]. *Chinese Journal of Explosives*

and Propellants, 1996 (4): 14-16.

- [5] Liu Z R. Thermal analysis for energetic materials [M]. Beijing: National Defense Industry Press, 2008.
- [6] http://www.somsds.com/detail.asp? id=-2142056035[2016-04-14].
- [7] Liu Z R, Wang C Y, Kong Y H, et al. Investigation of the thermal stability of nitroguanidine below its melting point[J]. Thermochim Acta, 1989, 146: 115-123.
- [8] Lee P P, Back M H. Kinetic studies of the thermal decomposition of nitroguanidine using accelerating rate calorimetry [J]. Thermochim Acta, 1988, 127: 89-100.
- [9] Lee P P, Back M H. Thermal decomposition of nitroguanidine [J]. Thermochim Acta, 1989, 141: 305-315.
- [10] Yan C L, Cheng Y. Investigation on the thermal stability of nitroguanidine by TG/DSC-MS-FTIR and multivariate non-linear regression[J]. J Therm Anal Calorim, 2010, 100: 949-953.
- [11] 洪三国,傅孝愿. 硝基胍热解反应途径的 t 子化学研究[J]. 物理 化学学报,1991,1(7):30-34. HONG San-guo, FU Xiao-yuan. A quantum chemical study of the mechanism of thermolythsis of nitroguanidine[J]. Acta Phys. Journal of physical chemistry, 1991, 1(7), 30-34.
- [12] Liu Z R, Wu C Y, Yin C M. The thermal decomposition of nitroguanidine and some derivatives [J]. Symp Chem Probl Connected Stabil Explos, 1988, 8: 369-389.
- [13] Volk F. Decomposition behavior of nitroguanidine [J]. Symp

Chem Probl Connected Stabil Explos, 1982, 6: 373-414.

- [14] UN Recommendations on the Transport of Dangerous Goods, Manual of tests and criteria, 5th revised edition, 2007.
- [15] Vyazovkina S, Burnhamb A K, Criadoc J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data [J]. Thermochim Acta, 2011, 520:1-19.
- [16] Friedman L H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry application to a phenolic plastic [J]. J Polym, Sci, 1964, Part C(6): 183-195.
- [17] Bertrand R, Marco H, Patrick F, et al. Thermal decomposition of AIBN, Part B: Simulation of SADT value based on DSC results and large scale tests according to conventional and new kinetic merging approach[J]. Thermochim Acta, 2015, 55: 1-8.
- [18] Elena M. Thermal decomposition of AIBN Part C: SADT calculation of AIBN based on DSC experiments[J]. Thermochim Acta, $2015.11 \cdot 1 - 13.$
- [19] Li X R, Wang X L, Koseki H. Study on thermal decomposition characteristics of AIBN[J]. J HAZARD MATER, 2008, 159: 13-18.
- [20] Bertrand R, Marco H, Patrick Folly, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points [J]. Thermochim Acta, 2014, 579: 31-39.

Thermal Decomposition Characteristic and Kinetics of Nitroguanidine Solution

CHEN Ying-ying¹, CHEN Li-ping¹, CHEN Wang-hua¹, DONG Ze^{1,2}, XUE Bei-bei¹, ZHANG Jun¹, WANG Yan¹

(1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2. Solvay Investment Co Ltd, Shanghai 200000, China)

Abstract: Nitroguanidine(NQ) is usually suggested add water as stabilizer before transport and storage. To investigate the thermal decomposition characteristic of the mixture, differential scanning calorimetry (DSC) was used to test the thermal decomposition behaviors of NQ under dynamic and isothermal conditions. The specific heat generation of the decomposition reaction were about 311 and 305 J \cdot g⁻¹ for dynamic and isothermal DSC. The activation energy of NQ solution under dynamic DSC ($E_{\alpha} = 84 - 78 \text{ kJ} \cdot \text{mol}^{-1}$) and isothermal DSC(E_{α} = 86–78 kJ · mol⁻¹) obtained by Friedman method was very close, and the value of it did not show much variation; indicated the reaction could be expressed as single step mechanism. And the bell-shaped curves under isothermal DSC indicated the autocatalytic character of it. Then a more accurate autocatalytic model was chosen to describe it, nonlinear fitting was used to calculate the kinetic parameters, the model function equation was expressed as $d\alpha/dt = \exp(18.03)\exp(-92170/RT)(1-\alpha)^{1.111}$ $\exp(18.00)\exp(-76400/RT)(1-\alpha)^{1.111}\alpha^{1.995}$. And the dynamic data well fitted with the model curves, verified the correctness of the single autocatalytic model.

Key words: nitroguanidine(NQ) solution; dynamic mode; isothermal mode; Friedman method; autocatalytic model www.energ 各能材料

- **Document code:** A
- DOI: 10.11943/j.issn.1006-9941.2017.03.014

CLC number: TJ55; O64