Vol.9, No.2 June,2001

文章编号:1006-9941(2001)02-0066-04

氦杂环丁烷硝基衍生物的热行为 ^{建要用1} 加出"

张教强¹,胡荣祖²
(1.西北工业大学化学工程系,陕西西安710072;
2.西北大学化学系,陕西西安710069)

摘要:用 DSC 法研究了 15 个氮杂环丁烷硝基衍生物在静态空气中的热行为。根据所得结果, 提出了这些氮杂环丁烷硝基衍生物的相对热稳定性次序,以及动力学参数间和热分解温度与热爆 炸临界温度间的两个相关式。

关键词:氮杂环丁烷硝基衍生物;热行为;DSC 中图分类号:0643.11

1 引 言

题称衍生物系一类含能材料。有关这类衍生物的 合成、分子结构和性能间的关系在文献中已有报 道^[1-3],而用 DSC 测定这类衍生物的热稳定性,则未 见报道。本工作旨在用 DSC 研究这类衍生物的热稳 定性。

2 实验部分

2.1 试 样

试验用的下列 15 个衍生物,均由我校制备和纯化,纯度均大于 99.5%。

(1)3,3-二硝基氮杂环丁烷二硝酰胺盐;(2)3,
3-二硝基氮杂环丁烷硝酸盐;(3)3,3-二硝基氮杂环丁烷硝仿盐;(4)3,3-二硝基氮杂环丁烷吉味酸盐;(6)
3,3-二硝基氮杂环丁烷-3-硝基-1,2,4-三唑-5-酮盐;(7)1,3-二(3',3'-二硝基氮杂环丁基)-2,2-二硝基丙烷;(8)1-(2',2',2'-三硝基乙基)-3,3-二硝基氮杂环丁烷;(9)3,3-二硝基氮杂环丁烷高氯酸盐;(10)1-(3',3'-二硝基氮杂环丁基)-2,2-二硝基丙烷;(11)
3,3-二硝基氮杂环丁烷-2,4,6-三硝基苯甲酸盐;(12)
二(3',3'-二硝基氮杂环丁基)酮;(13)1-(2',4'-二硝基苯基)-3,3-二硝基氮杂环丁烷;(14)1-(2',4',6'-

收稿日期: 2001-01-10; 修回日期: 2001-03-13 基金项目: 燃烧技术国家级重点实验室基金(04191-87)

作者简介:张教强(1965-),男,博士后,副教授,从事材料学 研究,已发表论文 30 余篇。 三硝基苯基)-3,3-二硝基氮杂环丁烷;(15)二(3', 3'-二硝基氮杂环丁基)乙二酮。

2.2 仪器及试验条件

文献标识码: A

DSC 试验在 CDR-1 型差动热分析仪上进行。实 验条件为:气氛,静态空气;参比物,α-Al₂O₃;在 0.5 ~ 22 ℃・min⁻¹范围内以 4~5个不同升温速率升温,试 样量,0.7 mg。

3 结果和讨论

氮杂环丁烷硝基衍生物 1~15 的典型 DSC 曲线 如图 1 所示。分解特征温度及热分解温度和热爆炸临 界温度、热分解动力学参数分别列在表 1~3 中。

图 1 衍生物 1~15 的 DSC 曲线(10 ℃ · min⁻¹)

Fig. 1 DSC curves of fifteen nitrosubstituted azetidines at heating rate of 10 ℃ • min⁻¹

Table 1	Chara	cteristic t	emperatu	re of the	thermal d	lecomposi	tion of fif	teen nitro	substitute	d azetidir	ies obtain	ed by DS	C curves
-						朱	F征温度/	°C	2	erro	R	it'	
Comp.	转晶	熔化过程			分解过程								
No.	过程		AT NL	过任		峰1			11.			峰 2	
	$T_{_{ m ec}}$	$T_{_{\rm im}}$	$T_{_{\rm em}}$	$T_{_{ m pm}}$	$T_{\rm fm}$	$T_{_{ m id1}}$		$T_{ m pd1}$	$T_{ m fd1}$	$T_{_{ m id2}}$	$T_{_{ m ed2}}$	$T_{ m pd2}$	$T_{\rm fd2}$
1							129.20	133.75	140.75				
2						130.10	137.25	139.40	145.50				
3						112.75		126.75			133.60	143.25	162.75
4		132.50	138.25	142.25	N	1	147.25	155.55	180.25				
5					1.	140.55	148.50	156.45	168.85				
6						141.00	153.25	156.65	160.65	160.65	162.35	169.05	188.00
7			73.75	77.40		146.00	159.80	169.85	203.15				
8		91.75	93.40	95.25		161.75	167.35	178.75	193.85				
9						168.90	185.35	191.00	203.25				
10		45.00	50.50	52.75	57.25	162.50	178.75	210.35	235.50				
11			155.15	157.40				167.75	179.75			214.15	232.75
12	99.25		156.25			200.75		253.00				269.25	288.50
13		180.50	201.35	208.25	214.25			270.75	299.75				
14				226.5			240.45	273.85	291.10				
15			254.75	259.25				283.25	301.75				

		cn
表 1	由 DSC 曲线(10 ℃・min ⁻¹)得到的 15 个氮杂环丁烷硝基衍生物热分解的特征温度 ¹⁾	i with
		L BOO

注:1) T为温度; c为转晶,m为熔化,d为分解; i、e、p和f分别为 DSC 曲线的始点、onset 点、峰顶和终点;1、2为峰1、峰2。

表 2 15 个氮杂环丁烷硝基衍生物的热分解温度和热爆炸临界温度1)

Table 2 Decomposition temperature and critical temperature of the thermal explosion of fifteen nitrosubstituted azetidines

Comp.	$T / ^{\circ}C$	$F/kI \cdot mol^{-1}$	$T / ^{\circ}$	Comp.	$T / ^{\circ}C$	$E/kI \cdot mol^{-1}$	$T / ^{\circ}C$	
No.	r _{pd0} , G	$E_0 / K_J = 1001$	r _b , C	No.	r _{pd0} , C	<i>L</i> ₀ / κ j · ΠΟΙ	т _b , С	
1	111.0	134.7	120.6	(9)	174.2	105.8	191.1	
2	109.9	107.5	122.0	10	165.0	103.3	181.6	
3	106.6	95.0	120.1	11	127.8	87.0	144.5	
4	123.6	122.9	0 134.9	12	236.1	167.2	249.7	
5	118.4	95.6	132.7	13	238.6	182.8	251.1	
6	138.0	122.4	150.2	14	233.7	151.2	248.7	
7	139.3	140.0	149.9	15	233.7	123.1	252.4	
8	148.0	139.5	159.1					
注:1) E_0 为 Ozawa 法 ^[4] 求得的表观活化能; T_{pd0} 和 T_b 分别为 Zhang-Hu-Xie-Li 法 ^[5] 求得的 $\beta \longrightarrow 0$ 时的峰温和热爆炸临界温								
です。								

	Tab	ie 3 Kii	表 3 15 个氮杂 netic parameters	环丁烷硝基衍 sof the therm	生物的素 al decom	A.分解动力学参数 aposition of fiftee	数值 ¹⁾ n nitrosubs	stituted (g.	n, AXX
Comp. No. β	'∕℃ • min ⁻¹	$T_{\rm p}$ /°C	$E_{\rm k}/{\rm kJ}\cdot{\rm mol}^{-1}$	$\log(A_{\rm k}/{\rm s}^{-1})$	Comp. No.	β /°C · min ⁻¹	$T_{\rm p}$ °C	$E_{\rm k}/{\rm kJ} \cdot {\rm mol}^{-1}$	$\log(A_{\rm k}/{\rm s}^{-1})$
1	0.9800	113.85	134.9	15.49	9	1.010	176.25	104.5	11.32
	1.960	121.00				2.059	180.10		
	5.131	126.35			108	6.912	187.80		
	10.39	133.75		0	313	10.86	193.35		
	20.70	143.75		· e''		22.01	202.75		
2	0.9691	114.45	106.3	11.53	10	1.005	174.75	100.8	8.78
	1.996	120.15	N			2.047	184.75		
	5.292	130.15	7			5.130	201.00		
	10.62	139.40				10.43	210.35		
	22.17	152.25				21.16	227.75		
3	0.9841	111.75	93.2	9.78	11	0.9752	134.25	84.3	7.88
	2.008	119.40				2.018	142.25		
	5.158	130.55				5.363	156.00		
	10.78	143.25				10.61	167.75		
	21.55	153.25				20.98	186.75		
4	1.00	130.55	122.3	13.01	12	1.016	244.00	166.9	13.96
	2.025	137.15				2.042	252.25		
	5.051	148.85				5.255	266.35		
	10.49	155.55				10.51	275.00		
	20.35	164.75				21.75	285.50		
5	0.9924	124.00	93.6	9.41	13	1.039	243.00	183.4	15.75
	1.968	131.90				2.090	250.00		
	5.256	144.25				5.211	259.10		
	10.28	156.65				10.62	270.75		
	20.86	167.50				21.83	280.00		
6	0.9925	144.05	121.4	12.37	14	1.019	242.00	150.0	12.31
	2.016	152.50		-	10.	2.372	252.05		
	5.133	162.25		19.)`	5.181	264.50		
	10.53	169.05		1815		10.66	273.85		
	20.72	182.75	X	S/,		21.74	288.50		
7	0.9955	144.50	140.0	14.71	15	0.9869	242.4	120.4	9.18
	1.9355	150.85	~\\`			2.054	253.4		
	5.110	161.15	0			5.201	269.7		
	10.28	169.85				10.63	283.25		
	20.52	175.75				21.60	301.50		
8	0.9655	152.75	139.3	14.27					
	1.970	159.55							
N	4.966	169.00							
	10.05	178.75							
A	20.54	186.00							

注:1) β 为加热速率; T_p 为峰顶温度; E_k 和 A_k 为 Kissinger 法^[6] 求得的表观活化能和表观指前因子。

由图 1、表 1~3 数据可见: (1) 衍生物 No. 12 熔 化前呈现的吸热峰归因于晶型转变;9个吸热峰归因 于 No.4、7、8、10~15 的熔化;在本实验条件下,衍生 物 No. 3、6、11、12 呈现二个放热分解峰,其余 11 个衍 生物仅呈现一个放热分解峰。(2)7个二硝基氮杂环 丁烷盐的耐热能力次序为: No. 9 > No. 6 > No. 5 > No.4 > No.3 > No.2 > No.1。(3) 热稳定次序: 缩合 产物(No.12~15) > Mannich 碱(No.7、8、10),这与缩 合产物分子中苯环或羰基(C==0)与杂氮原子上孤 对电子间存在共轭效应有关。(4) 15 个衍生物热分 解的动力学补偿效应关系式为: logA = 0.074 4E + 2.745 5。(5)15 个氮杂环丁烷硝基衍生物放热分解 反应的 T_{pd0} 与 T_b 间有良好的线性关系: $T_b = 10.0447$ +1.022 5 T_{pd0} , r = 0.998 9。(6) 以 T_{pd0} 为判据, 15 个 衍生物的安定性次序为: No. 13 > No. 12 > No. 14 ≈ No. 15 > No. 9 > No. 10 > No. 8 > No. 7 > No. 6 > No. 11 > No. 4 > No. 5 > No. 1 \approx No. 2 > No. 3。(7) 以 $T_{\rm h}$ 为判 据,15个衍生物的安定性次序为: No. 15 > No. 13 > No. 12 > No. 14 > No. 9 > No. 10 > No. 8 > No. 6 > No. 7

> No. 11 > No. 4 > No. 5 > No. 2 > No. 1 $> \approx$ No. 3 $_{\circ}$

参考文献:

- [1] Hiskey M A, Stinecipher M M, Brown J E. Synthesis and initial characterization of some energetic salts of 3,3-dinitroazetidine [J]. J. Energetic Materials, 1993, 11 (3): 157 - 165.
- [2] 张教强,朱春华,王伯周. 3,3-二硝基氮杂环丁烷硝基 化合物复盐的合成研究[J]. 火炸药,1997,20(1):8 -9.
- [3] 张教强,朱春华,张皋,等. 3,3-二硝基氮杂环丁烷的 缩合反应研究(1)[J].火炸药,1997,20(4):14-16.
- [4] Ozawa T. A new method of analyzing thermogravimatric data[J]. Bull. Chem. Soc. Jpn., 1965,38(11): 1881 1886.
- [5] Zhang Tonglai, Hu Rongzu, Xie Yi, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC [J]. Thermochim. Acta, 1994, 224(3): 171 - 176.
- [6] Kissinger H E. Reaction kinetics on differential thermal analysis[J]. Anal. Chem., 1957,29(11): 1702-1705.

Thermal Behaviour of Nitrosubstituted Azetidines

ZHANG Jiao-qiang¹, HU Rong-zu²

Department of Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
 Department of Chemistry, Northwest University, Xi'an 710069, China)

Abstract: The theraml behaviour of fifteen nitrosubstituted azetidines ,3 ,3-dinitroazetidinium dinitramide (1),3,3-dinitroazetidinium nitrate (2),3,3-dinitroazetidinium nitroform salt (3),3,3-dinitroazetidinium-3,5- dinitrobenzoate (4),3,3-dinitroazetidinium picrate (5),3,3-dinitroazetidinium-3-nitro-1,2,4triazol-5-onate (6),1,3-bis(3',3'-dinitroazetidine group)-2,2-dinitropropane (7),1-(2',2',2'-trinitroethyl)-3,3-dinitroazetidine (8), 3,3-dinitroazetidinium perchlorate (9),1-(3',3'-dinitroazetidineyl)-2,2-dinitropropane(10), 3,3-dinitroazetidinium-2,4,6-trinitrobenzoate (11), bis(3',3'-dinitroazetidine)ketone (12),1-(2',4'-dinitrophenyl)-3,3-dinitroazetidine (13), 1-(2',4',6'-trinitrophenyl)-3, 3-dinitroazetidine (14), bis(3',3'-dinitroazetidineyl) oxalone (15) in static air has been studied by means of differential scanning calorimetry. On the basis of the results obtained, the relative thermal stability order and two relationship between the kinetic parameters, and the exathermic decomposition temperature and thermal explosion critical temperature for above-mentioned nitrosubstituted azetidines are proposed.

Key words: nitrosubstituted azetidines; thermal hehaviour; DSC