文章编号:1006-9941(2025)05-0469-08

亚甲基桥联三唑-噁二唑不敏感含能化合物的合成及性能

刘尊棋1,谭 明2,易文斌1,于 琼1

(1. 南京理工大学化学与化工学院, 江苏 南京 210094; 2. 四川华川工业股份有限公司, 四川 成都 610106)

摘 要:以5-氨基-3-硝基-1,2,4-三唑(ANTA)为原料,通过三步反应合成新型亚甲基桥联氮氧杂环含能化合物1-((3-氨基-1,2,4-噁二唑-5-基)甲基)-3-硝基-1*H*-1,2,4-三唑-5-胺(3),并深入研究了溶剂,反应温度和反应时间等反应条件。利用核磁共振(NMR)、傅里叶红外光谱(FT-IR)和元素分析(EA)等方法对化合物1~3进行了表征。同时对化合物3进行了晶体培养和X射线单晶衍射测试,利用真空密度仪、热重-差示扫描量联用仪、撞击/摩擦感度仪等测试仪器,对化合物3进行性能研究,并运用高斯软件研究了其理论爆轰性能。结果表明,化合物3基于ANTA的总收率为35.4%,晶体堆积属于P2,/c单斜晶系,每个晶胞包含4个化合物3分子(Z=4),分子内、分子间存在大量氢键,其密度为1.68g·cm⁻³,分解温度为232.2℃,摩擦感度>360J,撞击感度>40J,理论爆速D为7196m·s⁻¹,爆压p为22GPa,优于传统炸药TNT(D,6881m·s⁻¹; p, 21.3 GPa)。

关键词:不敏感含能化合物;亚甲基桥联结构;合成;晶体结构;爆轰性能

中图分类号: TJ55;O64

文献标志码:A

DOI:10.11943/CJEM2025036

0 引言

高爆轰性能的含能化合物一直是含能材料领域的 研究目标^[1-3],传统硝胺类化合物黑索今(RDX)、奥克 托今(HMX)和六硝基六氮杂异伍兹烷(CL-20)具有优 异的爆轰性能,可以基本满足应用需求,但由于稳定性 差、对外界刺激敏感等原因,使得这类含能材料在储 存、运输等过程中存在很大的安全隐患,近年来研究重 心逐渐转移到寻找能量密度高的同时稳定性较好的含 能材料上^[4-6]。

在探索高性能、低敏感的含能材料过程中,富氮杂 环化合物因其独特的分子结构而备受青睐^[7-9],这类化 合物拥有较高的氮含量,分解时的化学键断裂和环张

收稿日期:2025-02-26;修回日期:2025-03-30
网络出版日期: 2025-04-27
基金项目:国家自然科学基金(22305124);江苏省自然科学基金
(BK20220967)
作者简介:刘尊棋(2000-),男,硕士研究生,主要从事含能化合物
的合成研究。e-mail:1074345494@qq.com
通信联系人:易文斌(1979-),男,教授,主要从事含能化合物的合
成研究。e-mail:yiwb@njust.edu.cn
于琼(1990-),女,副教授,主要从事新型含能化合物的合成与性能
研究。e-mail:qyu@njust.edu.cn
引用本文:刘尊棋,谭明,易文斌,等.亚甲基桥联三唑-噁二唑不敏感含能化名

力能够释放出大量能量^[10-11],提高化合物的爆轰性 能。因此,富氮杂环如三唑、四唑、和四嗪等成为了含 能化合物分子设计的重要基础,不仅可以提高目标化 合物的能量密度,还可以改善其物理和化学稳定 性^[12]。除了富氮杂环,氮氧杂环例如呋咱环、1,2, 4-噁二唑环、1,3,4-噁二唑环、氧化呋咱环等同样具有 比较高的氮含量,同时杂环骨架中的氧可以作为燃烧 过程中的氧源,能提高含能材料的燃烧效率,从而增加 其能量输出。因此氮氧杂环在含能分子的设计中也具 有广泛的应用,特别是在推进剂、炸药和烟火剂等方 面。通过合理设计氮氧杂环的结构和组成,可以开发 出性能优异、安全可靠的含能材料,满足国防、航空航 天和民用等领域的需求^[13]。

在含能材料分子设计中,桥联策略通过连接不同的分子片段,能够增强分子的稳定性和性能,被广泛应用并视为一种极其关键的方法。桥联策略主要包括偶联(-N=N-)、氮桥联(-N-)、亚甲基(-CH₂-)和氧化偶氮桥联(-N(O)=N-)等,其中亚甲基桥联策 % 略可以很好地提升化合物的稳定性^[14-16]。例如 Chinnam等^[17]报道了一系列于亚甲基桥联三唑和四唑环的含能化合物,该报道中大部分亚甲基桥联化合物对外界刺激不敏感(*IS*>40 J,*FS*>360 N),且爆速与

引用本文:刘尊棋,谭明,易文斌,等.亚甲基桥联三唑-嗯二唑不敏感含能化合物的合成及性能[J].含能材料,2025,33(5):469-476. LIU Zun-qi, TAN Ming, YI Wen-bin, et al. Synthesis and Properties of Insensitive Energetic Compound Based on Methyl-Bridged Triazole-Oxadiazole[J]. *Chinese Journal of Energetic Materials (Hanneng Cailiao)*,2025,33(5):469-476.

CHINESE JOURNAL OF ENERGETIC MATERIALS

RDX(8748 m·s⁻¹)接近。

据此,本研究设计合成了以亚甲基为桥联,富氮杂 环三唑环和氮氧杂环1,2,4-噁二唑环组合于同一个 分子中的含能化合物1-((3-氨基-1,2,4-噁二唑-5-基) 甲基)-3-硝基-1*H*-1,2,4-三唑-5-胺(**3**)。化合物**3**的合 成始于起始原料5-氨基-3-硝基-1,2,4-三唑(ANTA), 通过其与溴乙腈的反应引入亚甲基基团,将氰基转变 为1,2,4-噁二唑环。化合物**3**的结构采用核磁共振波 谱('H NMR、'³C NMR)、X-射线单晶衍射、元素分析 (EA)和傅里叶变换红外光谱(FT-IR)进行确证。利用热 重-差示扫描量热联用(TGA-DSC)分析了化合物**3**的热 行为,同时基于Gaussian 16软件计算了化合物**3**的生 成焓,利用K-J方程计算了化合物**3**的爆轰性能参数。

1 实验部分

1.1 试剂与仪器

试剂:四丁基溴化铵(TBAB)、氢氧化钾、溴化氰、 50%羟胺水溶液、溴乙腈均为试剂级,上海阿达玛斯试 剂有限公司供应;5-氨基-3-硝基-1,2,4-三唑(ANTA) 参照文献[18]合成。

仪器:500 MHz 核磁共振波谱仪,德国 Bruker 公司;差示扫描量热仪,DSC 300 Caliris,德国 Netzsch 公司;X-射线单晶衍射仪,Bruker D8 Quest,德国 Bruker 公司;BAM 摩擦感度仪,FSKM 10,捷克 OZM 公司;BAM撞击感度仪 BFH 12,捷克 OZM 公司;真密 度分析仪,AP 公司。

1.2 合成路线

以 5-氨基-3-硝基-1,2,4-三唑(ANTA)为底物,在 相催化剂条件下与溴乙腈反应生成亚甲基氰基取代化 合物1,再利用羟胺水溶液将一CN基团取代得到化合 物2,最后,通过溴化氰合环得到1-((3-氨基-1,2,4-噁 二唑-5-基)甲基)-3-硝基-1*H*-1,2,4-三唑-5-胺(**3**),合 成路线如 Scheme 1 所示。

1.3 实验过程

1.3.1 5-氨基-3-硝基-1*H*-1,2,4-三唑-1-乙腈(1)的 合成

在 20 ℃条件下,将 5-氨基-3-硝基-1,2,4-三唑 (0.516 g,4 mmol)和氢氧化钾(0.224 g,4 mmol)溶 于 5 mL 的水,搅拌 30 min;另外 20 ℃下将溴乙腈 (0.595 g,5 mmol)溶于1,2-二氯乙烷(5 mL)中,并加 入四丁基溴化铵(TBAB,0.129 g,0.4 mmol);将两溶 液混合,在强搅拌的条件下 20 ℃反应 12 h,过滤,用

Scheme 1 Synthesis of compound 3

少量水洗涤滤渣,在空气中干燥得到5-氨基-3-硝 基-1*H*-1,2,4-三唑-1-乙腈(1),浅褐色固体(0.349g, 基于ANTA收率52.0%)。IR(KBr, ν /cm⁻¹):3421, 3295,3165($-NH_2$),2962,2931($-CH_2-$),1642, 1573,1551,1522($-NO_2-$),1440,1412($-CH_2-$), 1317,1265,1150,1088,955,879,809,726,709, 632,456(-CN);¹H NMR(500 MHz, DMSO-*d*₆, 25 ℃) δ :5.38(s,2H, $-CH_2$),7.47(s,2H, $-NH_2$); ¹³C NMR(125 MHz, DMSO-*d*₆, 25 ℃) δ : 36.29, 115.02,157.13,160.30; Anal. calcd for C₄H₄N₆O₂: C 28.58,H 2.40, N 49.99; found C 28.70, H 2.55, N 50.11。

1.3.2 5-氨基-3-硝基-1*H*-1,2,4-三唑-1-氨基肟(2) 的合成

在0℃下,将5-氨基-3-硝基-1H-1,2,4-三唑-1-乙 腈(1.344 g, 8 mmol)溶于 20 mL乙腈, 搅拌 30 min, 然后在0℃下缓慢滴加质量分数为50%的羟胺水溶 液(10 mmol),滴加完毕后,在20℃下搅拌24 h,过 滤,用少量水洗涤滤渣,在空气中干燥得到5-氨 基-3-硝基-1H-1,2,4-三唑-1-氨基肟(2),浅褐色固体, (1.432 g,基于ANTA的收率46.3%)。IR(KBr, *ν*/cm⁻¹): $3477, 3440, 3386, 3288, 3224, 3160(-NH_2-),$ $1679, 1637, 1597, 1566, 1543, 1515(-NO_2-), 1443,$ $1409(-CH_2-), 1311, 1288, 1254, 1081(=N-OH),$ 972, 902, 864, 754, 677, 632, 547, 442; ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d_{6}, 25 \text{ }^{\circ}\text{C})\delta$: 4.62 $(s, 2H, -CH_{2})$, $5.62(s, 2H, -NH_2)$, 7.07 $(s, 2H, -NH_2)$, 9.37 $(s, 2H, -NH_2)$ 1H, -OH); ¹³C NMR(125 MHz, DMSO- d_6 , 25 °C) δ: 47.54, 147.76, 157.35, 159.65; Anal. calcd. for C₄H₇N₇O₂: C 23.89, H 3.51, N 48.75; found C 23.95, H 3.60, N 48.86°

1.3.3 1-((3-氨基-1,2,4-噁二唑-5-基)甲基)-3-硝 基-1H-1,2,4-三唑-5-胺(3)的合成

将碳酸氢钠(0.252 g, 3 mmol)溶于10 mL乙醇 和水以体积比按1:1混合的溶剂中,将5-氨基-3-硝 基-1H-1, 2, 4-三唑-1-氨基肟(0.201g, 1 mmol)分 5次加入,20℃下搅拌30min,然后加入溴化氰 (0.106 g,1 mmol),20 ℃下搅拌 24 h,滤除无机盐等 不溶杂质,将滤液减压蒸发,得到1-((3-氨基-1,2,4-噁 二唑-5-基)甲基)-3-硝基-1H-1,2,4-三唑-5-胺(3),浅 褐色固体(0.173 g,基于 ANTA 的收率 35.4%)。DSC (5 °C ⋅ min⁻¹): 232.2 °C (dec.); ¹H NMR (500 MHz, DMSO- d_6 , 25 °C) δ_i : 5.22 (s, 2H, -CH₂-), 7.25(s, 2H,-NH₂),7.97(s,2H,-NH₂);¹³C NMR(125 MHz, DMSO- d_6 , 25 °C) δ ; 43.30, 157.45, 159.97, 166.00, 172.77; IR(KBr, ν /cm⁻¹): 3404, 3039(-NH₂-), 1661, $1643, 1567, 1519(-NO_2-), 1433, 1319(-CH_2-),$ 1131, 856, 818, 748, 725, 694, 625, 520; Anal. calcd for C₅H₆N₈O₃: C 26.55, H 2.67, N 49.55; found C 26.71, H 2.80, N 49.79

1.4 性能测试

密度测试:使用 Anton Paar Ultrapyc 5000 真密 度分析仪对化合物 3进行测试,环境温度 25 ℃,药量为 1.0 g,在氩气氛围下测 15次每相邻三次取其平均值。

热稳定性测试:采用差示扫描量热法以及热重分 析对化合物3进行热稳定性测试,称量0.5 mg样品, 放入标准铝制坩埚中,氮气流速为30 mL·min⁻¹,升温 速率为5 K·min⁻¹,测试范围为50~350 ℃。

感度测试:采用 BAM 法测定化合物 3 的撞击感度 和摩擦感度,环境温度 25 ℃、药量约为 30 mg、落锤质 量为 5 kg、相对湿度 *q* <80% RH。

2 结果与讨论

2.1 晶体结构

将化合物 3 溶于甲醇, 配制成饱和溶液, 在 20 ℃ 下缓慢挥发, 析出化合物 3 的无色晶体。对于化合物 3, 选取了尺寸为 0.41 mm×0.15 mm×0.09 mm 的单晶 进行 X 射线衍射实验, 采用经石墨单色化的 MoK α 射 线(λ = 0.71073 Å)作为射线源, 在 304 K 温度下收集 了单晶衍射数据, 在 4.46°≤2 θ <52.77°的范围内, 共收 集了 15173 个衍射点, 其中有 1858 个是独立的衍射 点。最后, 使用全矩阵最小二乘法进行晶体结构修正, 得到最终的偏离因子 R_1 =0.0514 和 w R_2 =0.1231。 化合物3的晶体于其饱和甲醇溶液中获得,其相关 晶体结构和键长、键角、扭转角、氢键数据如表1~3所示, 具体的晶体结构和堆积方式如图1所示。化合物3的化 学组成为C₅H₆N₈O₃,分子摩尔质量为226.18 g·mol⁻¹,在 304.0 K测试温度下密度为1.652 g·cm⁻³。晶体属于 单斜晶系,空间群为P2₁/c,其对称性包括旋转轴和滑 移对称性。晶胞系数 a=9.148(2) Å,b=12.977(4) Å,

471

表1 化合物3的部分键长和键角参数

atom	atom	length / Å	atom	atom	atom	angle / (°)
N4	C4	1.333(2)	C4	N1	N6	110.06(13)
N4	C5	1.338(2)	C5	N6	N1	100.21(13)
N5	C4	1.350(2)	N1	C3	H3A	109.31(12)
N6	C5	1.306(2)	N1	C3	H3B	109.30(17)
N1	N6	1.3677(19)	H3A	C3	H3B	107.91(8)
N7	C2	1.322(2)	C1	C3	H3A	109.32(5)
N1	C4	1.359(2)	N1	C3	C1	111.59(13)
N2	C1	1.300(2)	N4	C4	N1	109.64(14)
N8	C1	1.360(2)	C1	C3	H3B	109.33(2)
N8	C2	1.312(2)	N8	C2	N7	128.18(16)

지수는 이 나는 지수는 것이 있는 것이 가지만 이 지 않는 것이 많은 것이지.	表	2	化合物	3	的部	分扭	转	角	参数
---	---	---	-----	---	----	----	---	---	----

Table 2	Selected	torsion	angles	of con	npound 3
	00100100		a	0.001	npound o

А	В	С	D	angle / (°)
01	N2	C1	N8	-0.37(19)
C4	N4	C5	N6	-0.19(19)
C5	N4	C4	N1	0.31(17)
N8	C1	C3	N1	-63.2(2)
O3	N3	C5	N4	2.5(2)
O3	N3	C5	N6	-176.84(16)
N1	N6	C5	N3	179.31(14)
N1	N6	C5	N4	-0.02(19)
N2	O1	C2	N7	179.68(15)
N2	O1	C2	N8	-1.09(19)
N2	C1	C3	N1	117.87(17)
C1	N8	C2	O1	0.84(19)
C1	N8	C2	N7	179.98(18)
C2	O1	N2	C1	0.83(17)
C2	N8	C1	N2	-0.3(2)
C2	N8	C1	C3	-179.20(15)
N6	N1	C4	N4	-0.35(17)
N6	N1	C4	N5	-176.87(14)
C3	N1	C4	N5	-2.6(3)
C4	N1	N6	C5	0.22(16)
C4	N1	C3	C1	74.7(2)
C4	N4	C5	N3	-179.50(14)

含能材料

士。 从人脑 • 故如八层牌 4 粉

衣 3	化合物 3	的前方	参奴			
Table	3 Selec	ted hydroge	n bond	param	eters of co	mpound 3
donor	—н	···acceptor	D—H	H…A	D…A	D—H…A
					<i>(</i>)	

N5	—H5B	N2	0.86	2.45	3.139(2)	137
N5	—H5B	N8	0.86	2.21	2.981(2)	149
N7	—H7A	N4	0.86	2.37	3.059(2)	138
N7	—H7B	N6	0.86	2.47	3.147(2)	136
C3	—H3B	···O2	0.97	2.41	3.374(2)	171

a. crystal structure

图1 化合物3的晶体结构和晶体堆积图(沿着 c轴观察),图中 蓝色虚线为分子间氢键,红色虚线为分子内氢键

Fig.1 Crystal structure and crystal packing diagram of compound **3** (viewed along the *c*-axis). The blue dotted lines represent intermolecular hydrogen bonds, while the red dotted lines indicate intramolecular hydrogen bonds.

c=7.6688(19)Å, $\alpha=90^{\circ}$, $\beta=92.880(8)^{\circ}$, $\gamma=90^{\circ}$,每个晶胞包含4个化合物**3**分子(Z=4)。实验描述其为块状晶体,尺寸约为0.41 mm×0.15 mm×0.09 mm。

在图 1a 和表 1 中可以看到, 化合物 3 分子中的键 长范围多在 1.2~1.4 Å之间, 近似于 N=N 键的键长,

分子内化学键较短,有利于提高化合物3的稳定性以 及分解时放出的能量。在图1a和表2中可以看到,与 亚甲基上的碳(C3)相连的4个原子是类似于甲烷分 子的四面体, N(1)-C(3)-C(1)的键角为111.6°, H(3)A-C(3)-H(3)B的键角为107.9°,N(1)-C(3)- $H(3)A_N(1)-C(3)-H(3)B \oplus C(1)-C(3)-H(3)A_N$ C(1)-C(3)-H(3)B的键角都是109.3°。在图1b和 表2中可以看到,三唑环内的扭转角(C(4)-N(4)-C(5)-N(6)C(5)-N(4)-C(4)-N(1)C(4)-N(1)-N(6)-C(5)N(1)-N(6)-C(5)-N(4)N(6)-N(1)-C(4)-N(4), O(1)-N(2)-C(1)-N(8)), 二唑环内的扭转角(C(1)-N(8)-C(2)-O(1)、 C(2) - O(1) - N(2) - C(1) C(2) - N(8) - C(1) - N(2)N(2)-O(1)-C(2)-N(8))、以及与环相连的N原 子的扭转角(N(1)-N(6)-C(5)-N(3),C(4)-N(4))-C(5)-N(3)N(6)-N(1)-C(4)-N(5)C(5)-N(4)-C(4)-N(5)C(1)-N(8)-C(2)-N(7)N(2)-O(1) - C(2) - N(7))均接近于 0°或者 180°, 说明化 合物3分子内的三唑环和噁二唑环以及与他们相连的 硝基、氨基各自的平面性非常好。在图 1b 和表 3 中可 以看到,分子中的与三唑环氨基可以与噁二唑上的氮 原子环形成分子内氢键,即N(5)-H(5)B...N(8);三 唑环上的氨基也可以与相邻分子中噁二唑上的氮原子 形成分子间氡键,即N(5)-H(5)A...N(2),另外,分子 中与噁二唑环相连的氨基可以与相邻分子中的三唑环 形成 N(7)—H(7)B····N(6)和 N(7)—H(7)A····N(4)的 分子间氢键,也可以和相邻分子中硝基上的氧原子,形 成N(7)—H(7)A···O(3)的分子间氡键,这5种氡键 提升了整个联环结构的稳定性,使得化合物3的热稳 定性得到了提升,也提高了化合物3对抗外界刺激的 能力,降低了含能分子的敏感度。

2.2 二维指纹、Hirshfeld表面分析

为了进一步研究化合物3的结构和性能之间的关 系,使用CrystalExplorer 21程序对化合物3的Hirshfeld表面和二维(2D)指纹图谱进行分析(图2)^[19-20]。 一般来说,在Hirshfeld表面图中,红色区域代表分子 表面之间强烈接触的区域,这些强相互作用有助于提 高化合物的热稳定性和堆积密度;蓝色区域显示分子 表面之间接触较弱或无分子间接触的区域,弱相互作 用(如H…H)对分子堆积的贡献较小,但可能降低材 料的感度。在图2a的Hirshfeld表面图中可以看出,化 合物3分子表面显示一定的平整性,这可能与分子堆 积中的π-π堆积作用有关,π-π堆积作用可以提升堆

图2 化合物3的Hirshfeld表面图和二维指纹图及不同相互作用力的分布比例

Fig.2 Hirshfeld surface diagram, fingerprint plot, and distribution ratio of different interaction forces

积密度和爆轰性能;另外图 2a中的蓝色区域较少,表 明分子间弱相互作用比例较低,说明化合物 3 在晶体 堆积中以强相互作用为主,从而表现出较高的热稳定 性。在图 2b的二维指纹图中,左下角有尖锐的峰,说 明分子间有强烈的 N····H/H····N 相互作用力,在图 2c 中不同相互作用力的分布比例图中也可以看出, N····H/H···N 作用力(32.7%)和 O····H/H···O 作用力 (29.9%)占据了主要的分子间相互作用,表明该材料 中氢键作用显著,这部分的相互作用力提高了分子的 稳定性;而H···H作用力(9.1%)也表明分子间存在一 定的范德华力作用,这种弱相互作用有可能降低感度。

2.3 反应条件优化研究

2.3.1 取代反应优化研究

早期的研究中,化合物1的合成以DMF作为溶剂,氯乙腈作为N-乙腈化试剂的反应效果并不理想^[17]。为了改善这一状况,本研究尝试使用亲核性更强的溴乙腈,并通过非均相反应进行ANTA的N-乙腈

 Table 4
 Optimization of reaction conditions for compound 1

表4 化合物1的反应条件优化

化反应。研究发现在水和1,2-二氯乙烷的非均相溶 剂条件下,该反应具有较好的反应性。在此基础上,进 一步对反应温度和时间进行了优化,优化结果如表4 所示。最佳反应条件为水和1,2-二氯乙烷的非均相 反应中用溴乙腈作为 N-乙腈化试剂,在25 ℃条件下 反应12 h,产率为52.0%。分析认为这是由于利用非 均相反应,催化剂的表面活性位点可以提供更高的反 应选择性,从而减少副产物的生成,并且温度的升高有 可能降低催化剂的活性,影响反应的进行。

2.3.2 环化反应优化研究

在探索化合物2的合环反应优化过程中,我们深 入研究了溴化氰合环反应的关键参数,包括反应溶剂 体系、反应时间和温度的控制,结果如表5所示。最佳 反应条件为水:乙醇(体积比)=1:1的溶剂体系中,在 20℃条件下反应24h,产率为76.5%。由于该反应为 放热反应,升高反应温度会降低反应的活性,故反应进 行到24h时,反应基本已经完成,达到最大产率。

No.	solvent	N-acetonitrile Reagent	temperature / $^{\circ}\!$	time / h	yield / %
1	DMF	bromoacetonitrile	25	12	Trace
2	THF	bromoacetonitrile	25	12	Trace
3	Acetone	bromoacetonitrile	25	12	Trace
4	$H_2O:1, 2-DCE=1:1 (v/v)$	chloroacetonitrile	25	12	Trace
5	$H_2O:1, 2-DCE=1:1 (v/v)$	chloroacetonitrile	25	12	Trace
6	$H_2O:1, 2-DCE=1:1 (v/v)$	bromoacetonitrile	70	12	39.9
7	$H_2O:1, 2-DCE=1:1 (v/v)$	bromoacetonitrile	55	12	43.1
8	$H_2O:1, 2-DCE=1:1 (v/v)$	bromoacetonitrile	40	12	46.3
9	$H_2O:1, 2-DCE=1:1 (v/v)$	bromoacetonitrile	25	6	46.5
10	$H_2O:1, 2-DCE=1:1 (v/v)$	bromoacetonitrile	25	12	52.0
11	$H_2O:1, 2-DCE=1:1 (v/v)$	bromoacetonitrile	25	24	51.8

表5 化合物3的反应条件优化

Table 5	Optimization	of reaction	conditions	for compound 3
---------	--------------	-------------	------------	----------------

Nia	colvent	temperature	time	yield
INO.	solvent	/ °C	/ h	/ %
1	H ₂ O	20	24	64.2
2	EtOH	20	24	65.0
3	$H_2O:EtOH=1:1(v/v)$	80	24	60.8
4	$H_2O:EtOH=1:1(v/v)$	60	24	64.8
5	$H_2O:EtOH=1:1(v/v)$	40	24	72.7
6	$H_2O:EtOH=1:1(v/v)$	20	12	74.5
7	$H_2O:EtOH=1:1(v/v)$	20	24	76.5
8	$H_2O:EtOH=1:1(v/v)$	20	48	76.4

2.4 热稳定性研究

采用热重-差示扫描量热联用仪(TG-DSC)对化合物 3 进行热稳定性研究,利用基线和放热峰拐点切线确定其热分解起始温度(onset),结果如图 3 所示。在TG曲线中,化合物 TG曲线外推起始点约为 232.2 ℃; 而从 DSC曲线中可知,化合物 3 的热分解过程中出现了一个吸热峰和一个放热峰,206.5 ℃时有一个面积较小的吸热峰,在这个温度下,化合物 3 发生了熔融现象;到 232.2 ℃开始出现一个高且宽的放热峰,在这个温度下,化合物 3 进入了一个剧烈的热分解过程,化合物在该阶段释放出大量能量,化合物 3 的起始热分解温度为 232.2 ℃。

表6 化合物3的理化性质和爆轰参数

 Table 6
 Physiochemical properties and detonation performances of compound 3

刘尊棋,谭明,易文斌,于琼

图3 化合物3的DSC曲线和TG曲线

Fig.3 TG and DSC curves of compound 3

2.5 物化爆轰以及安全性能研究

为进一步研究化合物3的爆轰参数和理化性质, 采用标准BAM锤方法测得化合物3的摩擦感度和撞 击感度;利用Anton Parr Ultrapyc 5000真密度分析仪 在20℃下对化合物3进行密度测试;利用Gaussian 16 (Revision A. 01)软件^[21],经过B3LYP函数和 6-31G**基组^[22-24]进行几何优化和频率分析后,在 M06-2X/DEF2-TZVP水平下计算单点能^[25],得到化合 物3的生成焓,基于化合物的生成焓和实测密度,结合 等键方程和K-J方程^[26]计算出化合物3的爆轰性能,结 果如表6所示。

compound	τ/°C	o / g. cm ⁻³	N+O / %	$\Lambda H / kl mol^{-1}$	D/me^{-1}	n/CPa	15/1	FS / NI
compound	r _d /C	p / g·cm		Δ_{f} (17) K) = 1101	D / 111-5	p/dra	137)	13/19
3	232.2	1.68	70.8	319.9	7196	22	>40	>360
TNT ^[27]	294	1.65	60.7	-59.4	6881	21.3	15	353
TATB ^[28]	>350	1.94	70	-139.7	7756	28	>40	>360

Note: T_d is decomposition temperature (onset, heating rate: 5 $^{\circ}C \cdot min^{-1}$). ρ is density measured based on a gas pycnometer at 298 K. N+O is nitrogen and oxygen content (wt%) of the compound. $\Delta_i H$ is the calculated heat of formation. D is detonation velocity. p is detonation pressure. *IS* is impact sensitivity. *FS* is friction sensitivity.

化合物3的撞击感度>40J,摩擦感度>360N,表 现出对机械刺激的不敏感性,具有较高的安全性,具有 潜在的应用价值。生成焓也与含能材料的爆轰性能息 息相关,生成焓越高,说明化合物分解时产生的热量越 大,也会带来更好的爆轰性能,化合物3的生成焓为 319.9 kJ·mol⁻¹,高于传统炸药TNT(-59.4 kJ·mol⁻¹) 和钝感含能材料TATB(-139.7 kJ·mol⁻¹),但由于晶体 堆积效率低,密度低于TATB,在一定程度上降低了化 合物3的爆轰性能,所以化合物3的爆压和爆速均高 于TNT,而略低于TATB。同时,相对TNT来说,化合 物3的氮氧含量高,替换TNT用于炸药配方中能够提高各组分的燃烧效率,提升其能量水平。

3 结论

以ANTA为底物,经过乙腈化反应生成N-乙腈取 代化合物5-氨基-3-硝基-1H-1,2,4-三唑-1-乙腈(1), 再利用羟胺水溶液将-CN基团取代为氨基肟,得到5-氨 基-3-硝基-1H-1,2,4-三唑-1-氨基肟(2),最后通过溴化 氰将氨基肟基团合环得到了1-((3-氨基-1,2,4-噁二 唑-5-基)甲基)-3-硝基-1H-1,2,4-三唑-5-胺(3),并对 以上三步反应进行了反应条件优化,并对化合物3进行了表征,得到结果如下:

(1) 通过 X 射线衍射对化合物 3 的晶体结构进行 表征,对其单分子晶体以及晶体堆积图进行分析,发现 化合物 3 分子内和分子间广泛存在氢键作用,具有良 好的稳定性。

(2)利用 DSC 对化合物 3 进行了热稳定性表征, 结果显示化合物 3 的起始热分解温度为 232.2 ℃;并 对化合物 3 进行了感度和密度测定。结果表明,化合物 3 的密度为 1.68 g·cm⁻³,撞击感度大于 40 J,摩擦感 度大于 360 J,化合物 3 具有较好的安全性能。

(3)通过计算得到化合物3的生成焓为319.9 kJ·mol⁻¹, 爆速为7196 m·s⁻¹,爆压为22.0 GPa,均优于传统炸药TNT。

参考文献:

- [1] WANG Ya-xi, ZHANG Xun, LIU Jun-liang, et al. Influence of nitroamino-nitroimino tautomerism: A useful theoretical supplement for nitroamino-based energetic materials[J]. *Energetic Materials Frontiers*, 2023, 4(4): 229–234.
- [2] KUMAR D, IMLER G H, PARRISH D A, et al. Aminoacetonitrile as precursor for nitrogen rich stable and insensitive asymmetric N-methylene-C linked tetrazole-based energetic compounds[J]. *Journal of Materials Chemistry A*, 2017, 5(32): 16767-16775.
- [3] 周阳, 龙新平, 王欣, 等. 高氮含能化合物的研究新进展[J]. 含能材料, 2006, 14(4): 315-320.
 ZHOU Yang, LONG Xin-ping, WANG Xin, et al. Review on high-nitrogen energetic materials[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2006, 14(4): 315-320.
- [4] 李涛,易文斌,于琼.两种富氮稠环型1,2,5-噁二唑类含能盐的合成及性能[J].含能材料,2024,32(6):615-622.
 LI Tao, YI Wen-bin, YU Qiong. Synthesis and properties of two 1,2,5-oxadiazole based energetic salts with nitrogen-rich fused ring skeleton[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2024, 32(6):615-622.
- [5] PAN Y, ZHU W. Theoretical design on a series of novel bicyclic and cage nitramines as high energy density compounds[J]. The Journal of Physical Chemistry A, 2017, 121(47): 9163–9171.
- [6] EATON P E, ZHANG M, GILARDI R. Hepta- and octanitrocubanes [J]. Angewandte Chemie International Edition, 2000, 39: 401–404.
- [7] CHEN C C, MCQUAID M J, Mechanisms and kinetics for the thermal decomposition of 2-azido-N, N-dimethylethanamine (DMAZ)[J]. *The Journal of Physical Chemistry A*, 2012, 116 (14): 3561–3576.
- [8] HUYNH M H V, HISKEY M, POLLARD C J, et al. 4, 4', 6, 6'-tetra-substituted hydrazo- and azo-1, 3, 5-triazines[J]. Journal of Energetic Materials, 2004, 22(4): 217–229.
- [9] HUYNH M H, HISKEY M A, HARTLINE E L, et al. Polyazido high-nitrogen compounds: hydrazo- and azo-1,3,5-triazine[J]. Angewandte Chemie International Edition, 2004, 43 (37) :

4924-4928.

- [10] NEUTZ J, GROSSHARDT O, SCHÄUFELE S, et al. Synthesis, characterization, and thermal behaviour of guanidinium-5-aminotetrazolate(GA)- a new nitrogen-rich. compound[J]. Propellants Explosives Pyrotechnics, 2003, 28(4): 181–188.
- [11] HE X, ZHANG J, GAO H. Theoretical thermochemistry: Enthalpies of formation of a set of nitrogen-containing compounds [J]. International Journal of Quantum Chemistry, 2012, 112(6): 1688–1700.
- [12] SAIKIA A, SIVABALAN R, POLKE B G, et al. Synthesis and characterization of 3, 6-bis(1*H*-1, 2, 3, 4-tetrazol-5-ylamino)-1, 2, 4, 5-tetrazine (BTATz): Novel high-nitrogen content insensitive high energy material.[J]. *Journal of Hazardous Materials*, 2009, 170(1): 306–313.
- [13] GE Cong-cong, YAN Ting-ou, CHENG Guang-bin, et al. Tricyclic compounds with 1, 4, 2, 5-dioxadiazine bridged triazoles and pyrazoles as potential energetic materials[J]. *Energetic Materials Frontiers*, 2023, 4(1): 10–15.
- [14] DONG Y, LIU Y, LYU Q, et al. Silver-Catalyzed Synthesis of 2-cyano-5-pyrazolyl-2*H*-tetrazole: A promising precursor to insensitive energetic compounds [J]. *Crystal Growth & Design*, 2022, 22(10): 6140–6147.
- [15] ZHANG J, BI F, YANG Z, et al. 5-Nitrotetrazol and 1, 2, 4-oxadiazole methylene-bridged energetic compounds: synthesis, crystal structures and performances [J]. *Molecules*, 2021, 26(23): 7072.
- [16] WANG Y, YE J, YANG N, et al. Strong intermolecular interaction induced methylene-bridged asymmetric heterocyclic explosives[J]. CrystEngComm, 2021, 23(43): 7635–7642.
- [17] CHINNAM A K, YU Q, IMLER G H, et al. Azo-and methylene-bridged mixed azoles for stable and insensitive energetic applications[J]. *Dalton Transactions*, 2020, 49(33): 11498-11503.
- [18] LEE K Y, STORM C B. Preparation and properties of 3-amino-5-nitro-1, 2, 4-triazole[R]. No. LA-11907-MS. 1990.
- [19] HIRSHFELD F L. Bonded-atom fragments for describing molecular charge densities [J]. Theoretica chimica acta, 1977, 44: 129–138.
- [20] SPACKMAN M A, JAYATILAKA D. Hirshfeld surface analysis [J]. CrystEngComm, 2009, 11(1): 19–32.
- [21] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16, Revision A.01, Gaussian, Inc., Wallingford CT, 2016.
- [22] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. *The Journal of Chemical Physics*, 1993, 98(7): 5648-5652.
- [23] HARIHARAN P C, POPLE J A. The influence of polarization functions on molecular orbital hydrogenation energies[J]. *Analytica Chimica Acta*, 1973, 28(3): 213–222.
- [24] STEPHENS P J, DEVLIN F J, CHABALOWSKI C F, et al. Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. *The Journal of Physical Chemistry*, 2002, 98(45): 11623–11627.
- [25] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. *Physical Chemistry Chemical Physics*, 2005, 7(18): 325-330.
- [26] KAMLET M J, JACOBS S J.Chemistry of detonations. I. A simple method for calculating detonation properties of C—H—N—O

explosives[J]. *The Journal of Chemical Physics*, 1968, 48(1): 23-35.

- [27] MEYER R, KÖHLER J, HOMBURG A. Explosives [M]. Hoboken: John Wiley & Sons, 2016.
- [28] DOBRATZ B M. The insensitive high explosive triaminotrinitrobenzene (TATB): development and characterization, 1888 to 1994 [R]. No. LA-13014-H. Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 1995.

Synthesis and Properties of Insensitive Energetic Compound Based on Methyl-Bridged Triazole-Oxadiazole

LIU Zun-qi¹, TAN Ming², YI Wen-bin¹, YU Qiong¹

(1. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2. Sichuan Huac/huan Industry Co., LTD, Chengdu 610106, China)

Abstract: By using 5-amino-3-nitro-1,2,4-triazole (ANTA) as raw material, a new methyl-bridged nitrogen-oxygen heterocyclic energetic compound 3-((5-amino-3-nitro-1H-1,2,4-triazol-1-yl)methyl)-1,2,4-oxadiazol-5-amine (**3**) was synthesized through a three-step reaction. The reaction conditions, including solvent, reaction temperature, and reaction time, were thoroughly investigated. Compounds**1–3**were characterized by nuclear magnetic resonance (NMR), fourier-transform infrared spectroscopy (FT-IR) and elemental analysis (EA). Single crystal X-ray diffraction analysis was also performed on compound**3**. The properties of compound**3**were studied by vacuum densitometer, thermogravimetric differential scanning meter and impact/friction sensitivity meter. The theoretical detonation performances of compound**3**were calculated by Gaussian software. Results show that the total yield of compound**3**is 35.4% based on ANTA. The crystal packing of compound**3** $belongs to the monoclinic system, space group <math>P2_1/c$, and each cell contains four molecules (Z=4) with a large number of intramolecular and intermolecular hydrogen bonds. The density of compound **3** is 1.68 g·cm⁻³, the decomposition temperature is 232.2 °C, the friction sensitivity is above 360 N, and the impact sensitivity is above 40 J. The theoretical detonation velocity and pressure of compound **3** are 7196 m·s⁻¹ and 22 GPa, respectively, which are better than that of the traditional explosive TNT(D, 6881 m·s⁻¹; p, 21.3 GPa). **Key words:** insensitive energetic compounds; methyl-bridged structure; synthesis; crystal structure; detonation performances

CLC number: TJ55;064Document code: ADOI: 10.11943/CJEM2025036Grant support: National Natural Science Foundation of China (No. 22305124); Natural Science Foundation of Jiangsu Province
(No. BK20220967)

(责编: 姜梅)