1138

文章编号:1006-9941(2024)11-1138-07

C₈H₂₄N₄(ClO₄)₄和C₈H₂₄N₄(NO₃)₄·2H₂O的合成与性能

刘 威', 荀晓东', 郭晓壮2, 杨 彩1

(1. 中北大学环境与安全工程学院,山西太原 030051; 2. 甘肃银光化学工业集团有限公司,甘肃 白银 730900)

摘 要: 研究采用小分子燃料1,4,7,10-四氮环十二烷与硝酸、高氯酸发生成盐反应,制备了C₈H₂₄N₄(ClO₄)₄和C₈H₂₄N₄(NO₃)₄·2H₂O 两种单质炸药。通过单晶 X-射线衍射、红外光谱、元素分析、差热分析、热重分析、EXPLO 5.0 程序对目标产物的结构、热性能、爆轰性能进行了研究。结果表明,C₈H₂₄N₄(ClO₄)₄属正交晶系,*Pcc*2空间群,晶体密度为 1.968 g·cm⁻³; C₈H₂₄N₄(NO₃)₄·2H₂O 的晶体为二水合物,属单斜晶型,*P*₂/*n*空间群,晶体密度为 1.642 g·cm⁻³。C₈H₂₄N₄(NO₃)₄·2H₂O 和 C₈H₂₄N₄(ClO₄)₄的热分解峰值温度及活化能分别为 293.2 ℃、284.1 ℃和 131.76、195.18 kJ·mol⁻¹。C₈H₂₄N₄(NO₃)₄·2H₂O 和 C₈H₂₄N₄(ClO₄)₄表现出了较为优异的爆轰性能,其爆速、爆压分别可达 8058、8680 m·s⁻¹和 24.0、36.2 GPa。此外,C₈H₂₄N₄(NO₃)₄·2H₂O 和 C₈H₂₄N₄(ClO₄)₄的撞击感度分别为 36、33 J,摩擦感度均大于 360 N。

关键词:1,4,7,10-四氮环十二烷;含能离子化合物 **中图分类号:** TI55:062

中图分类号: TJ55;O62

文献标志码:A

DOI:10.11943/CJEM2024027

0 引言

炸药作为能量来源,其发展对国防科技及国民经济的进步具有十分重要的影响^[1-3]。不同于传统的分子内炸药,将有机小分子燃料与氧化剂经过简单的化学反应转化制备为主客体炸药,是弹药研发的另一重要途径。譬如,陈小明院士团队分别将三乙烯二胺^[4-5]、哌嗪^[6]、高哌嗪^[7]、N-甲基哌嗪^[5]等小分子燃料与ClO₄⁻氧化剂及Na⁺、K⁺、Rb⁺、NH₄⁺、Ag⁺、NH₃OH⁺、NH₃NH₂⁺等通过化学反应,制备了具有钙钛矿结构的单质炸药,表现出了与黑索今相媲美的爆轰性能^[8]。此外,张琳^[9]和冯永安^[10]分别以三乙烯二胺作为有机燃料,IO₄⁻作为氧化剂,与Na⁺、K⁺、NH₄⁺等通过离子键结合,形成了具有钙钛矿结构的起爆药,表现出了优异的起爆能力。

收稿日期: 2024-01-20; 修回日期: 2024-04-10 网络出版日期: 2024-05-17 基金项目:山西省青年科学基金(202103021223179) 作者简介:刘威(1992-),男,讲师,主要从事含能材料的制备与应 用研究。e-mail:1104054142@st.nuc.edu.cn 通信联系人:刘威(1992-),男,讲师,主要从事含能材料的制备与 应用研究。e-mail:1104054142@st.nuc.edu.cn 引用本文:刘威,苟晓东,郭晓壮,等.C₈H₂₄N₄(ClO₄),和C₈H₂₄N₄(NO₃)₄-2H₂O的

1,4,7,10-四氮环十二烷作为有机燃料被广泛应 用于医药中间体及化工原材料,其结构中含有4个 一NH一基团,能够与4分子HNO,或HCIO,反应,有 望改善炸药的氧平衡。此外,1,4,7,10-四氮环十二 烷、稀硝酸(65%)和高氯酸(70%)均具有价格低廉、原 料易得等优点。1,4,7,10-四氮环十二烷与稀硝酸或 高氯酸之间的反应温和且平稳、放热量小,该方法制备 工艺简单、得率高,有利于大批量生产。因此,本研究 选取1,4,7,10-四氮环十二烷(C₈H₂₀N₄)作为有机燃 料,与氧化剂HNO₃和HClO₄发生酸碱成盐反应,制备 了C₈H₂₄N₄(NO₃)₄·2H₂O和C₈H₂₄N₄(ClO₄)₄两种单质 炸药,并采用单晶 X-射线衍射、红外光谱、核磁共振、 差示扫描量热仪等手段对其结构和热性能进行了分 析测试,采用 Explo 5.0 软件理论计算了 2 种新型炸 药的爆轰性能,为单质炸药提供了研究思路和实验 参考。

1 实验部分

1.1 试剂与仪器

试剂:1,4,7,10-四氮环十二烷(99%,上海麦克 林生化科技股份有限公司),稀硝酸(65%,国药集团化 学试剂有限公司),高氯酸(70%,国药集团化学试剂有

引用本文: 刘威, 荀晓东, 郭晓壮, 等, C₈H₂₄N₄(ClO₄)₄和C₈H₂₄N₄(NO₃)₄·2H₂O的合成与性能[J]. 含能材料, 2024, 32(11):1138-1144. LIU Wei, GOU Xiao-dong, GUO Xiao-zhuang, et al. Synthesis and Properties of C₈H₂₄N₄(ClO₄)₄ and C₈H₂₄N₄(NO₃)₄·2H₂O[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2024, 32(11):1138-1144.

Chinese Journal of Energetic Materials, Vol.32, No.11, 2024 (1138-1144)

含能材料

限公司)。

仪器:DF-101S型数显恒温水浴锅,上海力辰仪器 科技有限公司;傅立叶红外光谱(FTIR),美国 Thermo Scientific Nicolet iS20;X-射线粉末衍射,日本 Rigaku Smartlab 3kw;X-射线单晶衍射,德国 Bruker D8 VEN-TURE;差示扫描量热仪,美国 PerkinElmer STA 6000。 1.2 实验过程

1.2.1 C_aH_{a4}N₄(ClO₄)₄的合成

C_aH₂₄N₄(ClO₄)₄的合成路径如图 1a所示,其制备过 程如下:将1.73 g1,4,7,10-四氮环十二烷(10 mmol) 溶于 30 mL 去离子水中形成溶液。然后,在强搅拌 下将 5.74 g质量分数为 70% 的高氯酸(40 mmol)加 入上述溶液中,在室温下反应 20 min。随后,将反 应液进行过滤,滤液放置在小烧杯中缓慢挥发,约 一周可得C_aH₂₄N₄(ClO₄)₄的单晶,其得率以 1,4,7,10-四氮环十二烷计可达97%。IR(KBr, ν /cm⁻¹): 3128(s),3001(m),2865(m),2024(w),1561(s), 1481(s),1437(s),1303(w),1105(s),1041(m), 981(s),874(s),748(m),630(s)。¹H NMR(400 MHz, D₂O,25 ℃)δ:3.04(s,4H),3.23(s,16H),3.39(s, 4H);¹³C NMR(100 MHz,D₂O,25 ℃)δ:43.65。

1.2.2 C₈H₂₄N₄(NO₃)₄·2H₂O的合成

 $C_{a}H_{24}N_{4}(NO_{3})_{4}$ ·2H₂O的合成路径如图1b所示, 其制备过程如下:将1.73g1,4,7,10-四氮环十二烷 (10 mmol)溶于30 mL去离子水中形成溶液。然后, 在强搅拌下将3.88g质量分数为65%的硝酸 (40 mmol)加入上述溶液中,在室温下反应20 min。 随后,将反应液进行过滤,滤液放置在小烧杯中缓慢挥 发,约一周可得 $C_{a}H_{24}N_{4}(NO_{3})_{4}$ ·2H₂O的单晶,其得率以

图1 (a)C₈H₂₄N₄(ClO₄)₄和(b)C₈H₂₄N₄(NO₃)₄·2H₂O的合成 路径

Fig. 1 Synthesis path of (a) $C_8H_{24}N_4$ (ClO₄) ₄ and (b) $C_8H_{24}N_4$ (NO₃)₄·2H₂O

CHINESE JOURNAL OF ENERGETIC MATERIALS

1,4,7,10-四氮环十二烷计可达95%。IR(KBr, ν /cm⁻¹): 3447(s),3026(m),2795(w),2729(w),2666(w), 2561(w),2431(w),1754(w),1634(m),1605(m), 1485(w),1459(w),1384(s),1320(s),1092(w), 1045(m),959(w),817(m),760(w),722(w), 608(w)。¹H NMR(400 MHz, D₂O, 25 ℃) δ: 3.06(s, 4H),3.23(s,16H),3.41(s, 4H);¹³C NMR (100 MHz, D₂O, 25 ℃) δ: 43.74。Anal. calcd for C₈H₂₀N₄(NO₃)₄: C 20.85, H 6.08, N 24.33; found C 20.78, H 6.12, N 24.42。

2 结果与讨论

2.1 结构表征

 $C_8H_{24}N_4(ClO_4)_4 和 C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O 的晶体$ $结构参数及结构修正数据列于表1。其中, C_8H_{24}N_4$ $(ClO_4)_4属正交晶系, Pcc2空间群, 每个晶胞由两分子$ 1,4,7,10-四氮环十二烷和八分子高氯酸通过离子键作用形成, 晶胞参数 a=15.8899 Å, b=16.0809 Å, $c=15.1626 Å, <math>\alpha = \beta = \gamma = 90^\circ$ 。C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O属 单斜晶型, P2_1/n空间群, 每个晶胞由一分子1,4,7, 10-四氮环十二烷、四分子硝酸和两分子结晶水组成, 晶胞参数 a=7.4086 Å, b=9.0708 Å, c=13.9070 Å, $\alpha = \gamma = 90^\circ, \beta = 95.0520^\circ$ 。

 $C_8H_{24}N_4(NO_3)_4$ ·2H₂O的分子结构和晶体堆积方式 分别如图 2a~b 所示。由图 2a 可知,在 C_aH_aN_a(NO₃), 2H₂O分子中,1,4,7,10-四氮环十二烷呈椅式构型, 每分子1,4,7,10-四氮环十二烷与四分子硝酸通过离 子键结合,另有两分子的结晶水通过氢键作用游离于 晶胞中。此外,不同的C₈H₂₄N₄(NO₃)₄·2H₂O分子交 错排列,形成无限延伸的二维平面结构,并通过离子键 及氢键的相互作用,堆积形成C₈H₂₄N₄(NO₃)₄·2H₂O 的晶体结构。另外,为了研究 $C_{a}H_{A}N_{4}(NO_{a})_{4}$ ·2H₂O 的分子间相互作用力,还通过Crystal Explorer 21.5 软件计算得到了二维指纹图和Hirshfeld表面分析 图(图 2c~d), 不难发现 C₈H₂₄N₄(NO₃)₄·2H₂O 分子 间及分子内部存在多种氢键作用力,这些相互作用 使得其分子电荷分布更为均匀,有利于降低其感度 和提高安全性。 $C_{8}H_{24}N_{4}(ClO_{4})_{4}$ 的分子结构、晶体 堆积方式、二维指纹图、Hirshfeld表面分别如 图 2e~h 所示。由图 2e 可知, C₈H₂₄N₄(ClO₄)₄分子 中的1,4,7,10-四氮环十二烷呈船式构型,每分子 1,4,7,10-四氮环十二烷与四分子高氯酸通过离子

parameters	$C_8H_{24}N_4(CIO_4)_4$	$C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$		
CCDC	2322215	2322214		
empirical formula	$C_{16}H_{48}CI_8N_8O_{32}$	C ₈ H ₂₈ N ₈ O ₁₄		
formula weight	1148.22	460.38		
temperature/K	100	100		
crystal system	orthorhombic	monoclinic		
Space group	Pcc2	P2,/n		
a / Å	15.8899(8)	7.4086(2)		
<i>b</i> / Å	16.0809(9)	9.0708(3)		
<i>c</i> / Å	15.1626(8)	13.9070(5)		
α/(°)	90	90		
β/(°)	90	95.0520(10)		
γ / (°)	90	90		
volume/Å ³	3874.4(4)	930.95(5)		
Z	4	2		
$ ho_{calc}$ / g·cm ⁻³	1.968	1.642		
μ / mm ⁻¹	0.706	0.155		
<i>F</i> (000)	2368.0	488.0		
crystal size / mm ³	0.12×0.06×0.04	0.15×0.08×0.05		
radiation	ΜοΚα (λ=0.71073)	ΜοΚα (λ=0.71073)		
2Θ range for data collection/(°)	4.494 to 52.8	5.368 to 52.804		
index ranges	$-19 \leq h \leq 19 , -20 \leq k \leq 20 , -18 \leq l \leq 16$	$-9 \le h \le 9, -11 \le k \le 10, -17 \le l \le 17$		
reflections collected	27308	10492		
independent reflections	7498 [<i>R</i> _{int} =0.0877, <i>R</i> _{sigma} =0.0738]	1895 [R_{int} =0.0542, R_{sigma} =0.0373]		
data/restraints/parameters	7498/1/577	1895/0/136		
goodness-of-fit on F^2	1.067	1.031		
final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0651$, w $R_2 = 0.1732$	$R_1 = 0.0341$, w $R_2 = 0.0878$		
final R indexes [all data]	$R_1 = 0.0808$, w $R_2 = 0.1860$	$R_1 = 0.0391$, w $R_2 = 0.0922$		
largest diff. peak/hole / e Å ⁻³	0.80/-0.78	0.32/-0.31		

表1 $C_8H_{24}N_4(ClO_4)_4\pi C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ 的晶体结构数据与精修参数 **Table 1** Crystal data and structure refinement details for C_H_N(ClO_) and C_H_N(NO_) \cdot 2H_O

图 2 C₈H₂₄N₄(NO₃)₄·2H₂O的(a)分子结构图,(b)晶胞堆积图,(c)2D指纹图,(d)Hirshfeld表面图;C₈H₂₄N₄(ClO₄)₄的(e)晶体结构图,(f)晶胞堆积图,(g)2D指纹图,(h)Hirshfeld表面图

Fig. 2 Molecular structure (a), packing view (b), 2D finger-print plots (c), Hirshfeld surface (d) of $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O_3$, Molecular structure (e), packing view (f), 2D finger-print plots (g), Hirshfeld surface (h) of $C_8H_{24}N_4(CIO_4)_4$

键相结合。不同的 $C_8H_{24}N_4(CIO_4)_4$ 分子整齐排列, 形成无限延伸的二维平面结构,并通过离子键及氢 键的相互作用,进而堆积形成 $C_8H_{24}N_4(CIO_4)_4$ 的晶 体结构。此外, $C_8H_{24}N_4(CIO_4)_4$ 分子间及分子内部 也存在多种氢键作用力,这些相互作用使得其分子 电荷分布更为均匀。

除了测试C₈H₂₄N₄(NO₃)₄·2H₂O和C₈H₂₄N₄(ClO₄)₄ 的单晶 X-射线衍射外,还对两种化合物的粉末 X-射 线衍射进行了表征,其XRD图谱如图 3 所示。由图 3 可知,C₈H₂₄N₄(NO₃)₄·2H₂O和C₈H₂₄N₄(ClO₄)₄的粉 末 XRD 谱图与其单晶 CIF 文件通过 Mercury 软件^[11] 模拟出的 XRD 谱图衍射峰位置可以很好地匹配,这 说明粉末 XRD 的测试结果与单晶 X-射线衍射的结果 相吻合。

图 3 (a)C₈H₂₄N₄(NO₃)₄·2H₂O和(b)C₈H₂₄N₄(ClO₄)₄的测试 及模拟的粉末 XRD 谱图

Fig.3 The tested and simulated powder XRD spectra of (a) $C_8H_{24}N_4(NO_3)_4\cdot 2H_2O$ and (b) $C_8H_{24}N_4(CIO_4)_4$

2.2 热性能表征

为了表征 $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O 和 C_8H_{24}N_4(CIO_4)_4$ 的 热 稳 定 性,在升 温 速 率 10 K·min⁻¹、氮 气 流 量 30 mL·min⁻¹的条件下,采用 DSC-TG 对制备样品的热 性能进行了测试,其结果如图 4 所示。由图 4a 可知, $C_8H_{24}N_4(CIO_4)_4$ 的 DSC 曲线在 238.7 ℃附近出现一个 小的吸热峰,但对应温度下的TG曲线并未出现热失 重,这可能是由于 $C_aH_{24}N_4(ClO_4)_4$ 发生融化或晶型转 化所致。此外, $C_{a}H_{24}N_{4}$ (ClO₄)₄的 DSC 曲线在 284.1℃出现一个明显的放热峰,且对应温度下TG曲 线中出现明显的热失重,这是由于 $C_{a}H_{24}N_{4}(CIO_{4})_{4}$ 的 热分解导致。图 4b 展示了 C₈H₂₄N₄(NO₃)₄·2H₂O 的 DSC-TG 曲线, 不难发现 C₈H₂₄N₄(NO₃)₄·2H₂O 的 DSC曲线在115.6 ℃、154.6 ℃和171.8 ℃时出现三 个明显的吸热峰,对应温度下的TG曲线中出现明显 的热失重。其中,位于115.6℃处的吸热峰可能是由 于 $C_{a}H_{24}N_{4}(NO_{3})_{4}$ ·2H₂O失去结晶水所致。此外, C₈H₂₄N₄(NO₂)₄·2H₂O的DSC曲线在293.2 ℃出现一 个明显的放热峰,且对应温度下的TG曲线中出现明显的 热失重,这是由于 $C_{a}H_{24}N_{4}(NO_{3})_{4}$ ·2H₂O的热分解导致。 另外,与目前应用最为广泛的单质炸药黑索今(RDX)和 奥克托今(HMX)相比, C₈H₂₄N₄(NO₃)₄·2H₂O和 $C_{8}H_{24}N_{4}$ (ClO₄)₄ 的 热 稳 定 性 要 明 显 优 于 RDX (210 ℃)^[12],与HMX(287 ℃)^[13]的热稳定性相当。

此外,为了研究 $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O 和 C_8H_{24}N_4$ (ClO₄)₄的热分解动力学规律,还测试了升温速率为 5、10、15、20 K · min⁻¹时 $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ 和 $C_8H_{24}N_4(ClO_4)_4$ 的 DSC 曲线(图 4c~f),并通过 Kissinger 法^[14]计算了样品的活化能,其计算方法如下:

$$\ln \frac{\beta_i}{T_{p_i}^2} = \ln \frac{AR}{E_a} - \frac{E_a}{RT_{p_i}}$$

式中, β 为升温速率,K·min⁻¹; E_a 为表观活化能,kJ·mol⁻¹; T_p 代表热分解峰值温度,K;R代表理想气体常数 (8.314 J·mol⁻¹·K⁻¹);A为指前因子。采用ln(β/T_p^2)对 $1/T_p$ 作线性拟合,由拟合曲线的斜率即可求得相应 的 E_a 。

由图 4c~4d 可知,4个升温速率下 C₈H₂₄N₄(ClO₄)₄ 的热分解峰值温度分别为 278.6 ℃,284.1 ℃,287.6 ℃, 293.4 ℃,经线性拟合可得其活化能为 195.18 kJ·mol⁻¹。 此外,从图 4e~4f 可以看出,升温速率分别为 5,10, 15,20 K·min⁻¹时 C₈H₂₄N₄(NO₃)₄·2H₂O 的热分解峰 值温度分别为 285.4,293.2,305.5,312.3 ℃,采用 Kissinger法线性拟合可得其活化能为 131.76 kJ·mol⁻¹。

2.3 爆轰性能与物化性能

为了研究化合物 $C_8H_{24}N_4(NO_3)_4$ ·2H₂O和 $C_8H_{24}N_4(CIO_4)_4$ 的爆轰性能,采用Gaussian 09程序 包^[15]以密度泛函理论在B3LYP/6-311G**基组^[16]下对化 合物的标准摩尔生成焓进行了计算,采用以下公式将

图 4 (a) C₈H₂₄N₄(ClO₄)₄和(b) C₈H₂₄N₄(NO₃)₄·2H₂O的DSC-TG曲线, (c~d)不同升温速率下C₈H₂₄N₄(ClO₄)₄的DSC曲线以及 ln(β/T_p^2)对1/ T_p 的相关性曲线, (e~f)不同升温速率下C₈H₂₄N₄(NO₃)₄·2H₂O的DSC曲线以及 ln(β/T_p^2)对1/ T_p 的相关性曲线 **Fig.4** The DSC and TG curves of (a) C₈H₂₄N₄(ClO₄)₄ (b) C₈H₂₄N₄(NO₃)₄·2H₂O, (c) and (d) represent the DSC curves and dependence of ln(β/T_p^2) on 1/ T_p of C₈H₂₄N₄(ClO₄)₄, (e) and (f) represent the DSC curves and dependence of ln(β/T_p^2) on 1/ T_p of C₈H₂₄N₄(ClO₄)₄, (e) and (f) represent the DSC curves and dependence of ln(β/T_p^2) on 1/ T_p of C₈H₂₄N₄(ClO₄)₄, (e) and (f) represent the DSC curves and dependence of ln(β/T_p^2) on 1/ T_p of C₈H₂₄N₄(ClO₄)₄, (e) and (f) represent the DSC curves and dependence of ln(β/T_p^2) on 1/ T_p of C₈H₂₄N₄(ClO₄)₄, (e) and (f) represent the DSC curves and dependence of ln(β/T_p^2) on 1/ T_p of C₈H₂₄N₄(ClO₄)₄, (e) and (f) represent the DSC curves and dependence of ln(β/T_p^2) on 1/ T_p of C₈H₂₄N₄(ClO₄)₄, (e) and (f) represent the DSC curves and dependence of ln(β/T_p^2) on 1/ T_p of C₈H₂₄N₄(NO₃)₄·2H₂O

100 K下X-射线单晶衍射测试所得晶体密度(ρ_{100K})换算 为室温下的晶体密度(ρ_{298K}),并在此基础上运用EXPLO 5.0(6.02版)软件^[17]计算得到了C₈H₂₄N₄(NO₃)₄·2H₂O 和C₈H₂₄N₄(ClO₄)₄的爆速、爆压等爆轰性能,并与常见 单质炸药的爆轰性能进行了对比,其计算结果列 于表 2。

 $\rho_{298K} = \frac{\rho_T}{1 + \alpha_V (298 - T_0)}$ $\vec{x} \oplus , \alpha_V = 1.5 \times 10^{-4} \, \text{K}^{-1} \, \text{o}$

由表2可知,C₈H₂₄N₄(NO₃)₄·2H₂O和C₈H₂₄N₄(ClO₄)₄ 的标准摩尔生成焓分别为-931.77 kJ·mol⁻¹和 $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ 的爆速和爆压分别为8058 m · s⁻¹、 24.0 GPa,优于TNT的爆轰性能(7178 m · s⁻¹、20.5 GPa), 但低于RDX(8795 m · s⁻¹、34.9 GPa)和HMX(9320 m · s⁻¹、 39.5 GPa)的爆轰性能。 $C_8H_{24}N_4(ClO_4)_4$ 的爆速和爆 压分别为8680 m · s⁻¹、36.2 GPa,优于TNT的爆轰性能, 但较RDX和HMX的爆轰性能差。此外,与TNT、RDX和 HMX相比, $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ 和 $C_8H_{24}N_4(ClO_4)_4$ 表现出更好的热稳定性和更低的感度,表明 $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ 和 $C_8H_{24}N_4(ClO_4)_4$ 在单质炸药 领域具有潜在的应用前景。

489.98 kJ·mol⁻¹。通过 EXPLO 5.0 软件计算可得

I		0	20 4 . 4.4 8	24 4 3.4	2		1
compound	ho / g·cm ⁻³	$T_{\rm d}$ / °C	$\Delta H_{\rm f} / \rm kJ \cdot mol^{-1}$	$D / \mathrm{m} \cdot \mathrm{s}^{-1}$	p / GPa	<i>IS /</i> J	<i>FS</i> / N
$C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$	1.595	293.2	-931.77	8058	24.0	36	>360
$C_8H_{24}N_4(CIO_4)_4$	1.911	284.1	489.98	8680	36.2	33	>360
TNT ^[18]	1.654	244.0	-67.00	7178	20.50	15	353
RDX ^[19]	1.800	210.0	93.00	8795	34.9	7.4	120
HMX ^[19]	1.900	287.0	105.00	9320	39.5	7	120

表2 $C_8H_{24}N_4(CIO_4)_4$ 和 $C_8H_{24}N_4(NO_3)_4$ ·2H₂O的爆轰性能与常规炸药的性能对比

Table 2 Comparison of detonation performance of $C_8H_{20}N_4(ClO_4)_4$ and $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ with conventional explosives

Note: ρ is the crystal density at 298 K. T_d is the decomposition temperature from DSC (onset temperature at a heating rate of 10 K·min⁻¹). ΔH_i is the calculated molar enthalpy of formation in solid state. *D* is the calculated detonation velocity. ρ is the calculated detonation pressure. *IS* is the impact sensitivity. *FS* is the friction sensitivity.

3 结论

(1)以1,4,7,10-四氮环十二烷作为有机小燃料, HNO₃和HClO₄作为氧化剂,通过简单的酸碱反应制 备了C₈H₂₄N₄(NO₃)₄·2H₂O和C₈H₂₄N₄(ClO₄)₄两种单 质炸药,并对其结构与性能进行了表征。

(2)测试并获得了 $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ 和 $C_8H_{24}N_4(ClO_4)_4$ 的晶体结构数据。 $C_8H_{24}N_4(ClO_4)_4$ 属 正交晶系, *Pcc2*空间群, 晶体密度为 1.968 g·cm⁻³; $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ 的晶体为二水合物,属单斜晶 型, *P2*₁/*n*空间群, 晶体密度为 1.642 g·cm⁻³。此外,还采 用 Hirshfeld 表面分析方法研究了两种晶体中分子间的 作用力及表面静电势分布,发现 $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ 和 $C_8H_{24}N_4(ClO_4)_4$ 分子间及分子内部存在多种氢键作 用力。

(3)对两种目标产物的热分解过程及动力学规律 进行了研究, C₈H₂₄N₄(NO₃)₄·2H₂O和C₈H₂₄N₄(ClO₄)₄ 的热分解峰值温度分别为 293.2 ℃和 284.1 ℃, 热分 解活化能分别为 131.76 kJ·mol⁻¹和 195.18 kJ·mol⁻¹。

(4) C₈H₂₄N₄(NO₃)₄·2H₂O和C₈H₂₄N₄(ClO₄)₄的标 准摩尔生成焓分别为-931.77 kJ·mol⁻¹、489.98 kJ·mol⁻¹。 运用 EXPLO 5.0软件计算得到C₈H₂₄N₄(NO₃)₄·2H₂O的 爆速、爆压分别为8058 m·s⁻¹、24.0 GPa,C₈H₂₄N₄(ClO₄)₄ 的爆速、爆压分别为8680 m·s⁻¹、36.2 GPa。此外, C₈H₂₄N₄(NO₃)₄·2H₂O和C₈H₂₄N₄(ClO₄)₄的撞击感度 分别为36 J、33 J,摩擦感度均大于360 N,在单质炸药 领域表现出潜在的应用前景。

参考文献:

[1] 郝志坚,王琪,杜世云.炸药理论[M].北京:北京理工大学出版社,2015:1-8.

HAO Zhi-jian, WANG Qi, DU Shi-yun. Explosive theory[M]. Beijing: Beijing Institute of Technology Press, 2015: 1–8.

- [2] 蔡振华,高军,杨桦.陆军集团军弹药应急供应保障系统设计
 [J]. 兵工自动化,2007,26(7):98-100.
 CAI Zhen-hua, GAO Jun, YANG Hua. Design of the emergen-
- cy supply support system for ammunition in the army group army[J]. Ordnance Industry Automation, 2007, 26(7):98-100.
 [3] OAKS D M. Should the U.S. Army adopt new policies and pro-
- [D]. Santa Monica: the RAND graduate school, 1996.
- [4] CHEN S L, YANG Z R, WANG B J, et al. Molecular perovskite high-energetic materials [J]. Science China Materials, 2018, 61(8): 1123-1128.
- [5] SHANG Y, HUANG R K, CHEN S L, et al. Metal-free molecular perovskite high-energetic materials [J]. Crystal Growth & Design, 2020, 20: 1891–1897.
- [6] CHEN S L, SHANG Y, HE C T, et al. Optimizing the oxygen balance by changing the A site cations in molecular perovskite high-energetic materials [J]. CrystEngComm, 2018, 20(46): 7458-7463.
- [7] ZHANG W X, CHEN S L, SHANG Y, et al. Molecular perovskites as a new platform for designing advanced multi-component energetic crystals [J]. *Energetic Materials Frontiers*, 2020, 1(3-4): 123-135.
- [8] 邓鹏,陈劭力.分子钙钛矿含能材料新进展[J].火炸药学报, 2023,46(3):178-180.
 DENG Peng, CHEN Shao-li. New progress in molecular perovskite energetic materials [J]. Chinese Journal of Explosives & Propellants, 2023, 46(3):178-180.
- [9] CHEN S, YI Z, JIA C, et al. Periodate-based perovskite energetic materials: a strategy for high-energy primary explosives
 [J]. Small, 2023, 19(42):2302631.
- [10] FENG Y, ZHANG J, CAO W, et al. A promising perovskite primary explosive[J]. Nature Communications, 2023, 14(1): 7765.
- [11] 李冰, 倪刚. Mercury 软件在配位化学教学中的应用[J].化学教育, 2020, 41(24):98-101.
 LI Bin, NI Gang. Application of mercury software in teaching of coordination chemistry[J]. Chinese Journal of Chemical Education, 2020, 41(24):98-101.
- [12] LIU Q, JIN B, ZHANG Q, et al. Nitrogen-rich energetic metal-organic framework: Synthesis, structure, properties, and thermal behaviors of Pb (II) complex based on N, N-bis (1H-tetrazole-5-yl)-amine[J]. *Materials*, 2016, 9(8): 681.
- [13] ZHANG J, DU Y, DONG K, et al. Taming dinitramide anions within an energetic metal-organic framework: A new strategy

CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

for synthesis and tunable properties of high energy materials [J]. *Chemistry of Materials*, 2016, 28(5): 1472–1480.

- [14] ZHOU Q, JIN B, CHU S, et al. Farrow-derived layered porous carbon aerogel for AP catalytic thermal decomposition
 [J]. Inorganic Chemistry Frontiers, 2021, 8(11): 2798–2808.
- [15] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSS-IAN 09 revision A.1 [CP]. Gaussian, Inc., Wallingford C, 2009.
- BECKE A D. Density-functional thermochemistry. The role of exact exchange [J]. Journal of Chemical Physics, 1993, 98 (7): 5648-5652.
- [17] KAMLET M J, JACOBS S J. Chemistry of detonation I. a sim-

ple method for calculation detonation properties of CHNO explosives [J]. *Journal of Chemical Physics*, 1968, 48 (1): 23–35.

- [18] SHEN C, XU Y, LU M. A series of high-energy coordination polymers with 3, 6-bis (4-nitroamino-1, 2, 5-oxadiazol-3-yl)-1, 4, 2, 5-dioxadiazine, a ligand with multi-coordination sites, high oxygen content and detonation performance: Syntheses, structures, and performance[J]. *Journal of Materials Chemistry* A, 2017, 5(35): 18854–18861.
- [19] LIU Y, ZHAO G, TANG Y, et al. Multipurpose [1,2,4] triazolo [4, 3-b][1, 2, 4, 5] tetrazine-based energetic materials [J]. *Journal of Materials Chemistry A*, 2019, 7(13): 7875–7884.

Synthesis and Properties of $C_8H_{24}N_4(CIO_4)_4$ and $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$

LIU Wei¹, GOU Xiao-dong¹, GUO Xiao-zhuang², YANG Cai¹

(1. School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China; 2. Gansu Yinguang Chemistry Corporation, Norinco Group, Baiyin, 730900, China)

Abstract: Two new explosives, $C_8H_{24}N_4(ClO_4)_4$ and $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$, were prepared from 1,4,7,10-tetranitrocyclododecane by salt formation with nitric acid and perchloric acid respectively. The structures, thermal properties, and detonation performances of the target products were studied through single crystal X-ray diffraction, infrared spectroscopy, elemental analysis, differential thermal analysis, thermogravimetric analysis, and EXPLO 5.0 program. Results indicate that $C_8H_{24}N_4(ClO_4)_4$ crystallizes in the orthogonal crystal system, *Pcc2* space group with a crystal density 1.968 g·cm⁻³. The crystal of $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ is a dihydrate with a crystal density of 1.642 g·cm⁻³, which belongs to the monoclinic crystal system *P2*₁/*n* space group. The thermal decomposition peak temperatures of $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ and $C_8H_{24}N_4(ClO_4)_4$ are 293.2 °C and 284.1 °C, and activation energies are 131.76 kJ·mol⁻¹ and 195.18 kJ·mol⁻¹, respectively. Compounds $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ and $C_8H_{24}N_4(ClO_4)_4$ exhibit excellent detonation properties, showing very promising performance values ($C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$, *D*=8058 m·s⁻¹, *p*=24.0 GPa; $C_8H_{24}N_4(ClO_4)_4$, *D*=8680 m·s⁻¹, *p*=36.2 GPa). Moreover, the impact sensitivities of $C_8H_{24}N_4(NO_3)_4 \cdot 2H_2O$ and $C_8H_{24}N_4(ClO_4)_4$ are 36 J and 33 J, respectively, and their friction sensitivities are higher than 360 N.

Key words: 1,4,7,10-tetranitrocyclododecane; energetic ionic compoundsCLC number: TJ55;O62Document code: AGrant support: Shanxi Provincial Youth Science Fundation (No. 202103021223179)

DOI: 10.11943/CJEM2024027

(责编: 姜梅)