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Abstract: Solubility is an important parameter for the crystallization of molecular perovskite energetic materials
(H,N,H,,) [NH,(CIO,),](DAP-4). In this work, the dissolution behaviors of DAP-4 at different temperatures (288-323 K) and
in different solvents (ethanol, ethyl acetate, formic acid, deionized water, acetone, cyclohexane, methanol, acetonitrile,
n-propanol) were studied by the gravimetric method. The dissolution models were established by the Apelblat equation and the
Ah equation, respectively. Meanwhile, the dissolution thermodynamic parameters (AH,, AS,, AG,) were obtained by Van’t
Hoff equation based on the thermodynamic principle of solid-liquid equilibrium. Results show that the solubility of DAP-4 is the
largest in water and the smallest in ethyl acetate, which are increased with the increasing of temperature in different solvents.
The fitting result of dissolution model from the Apleblat equation is better than that of the Ah equation. Positive values of AH,,
AS,, and AG,indicate that the dissolving process of DAP-4 are non-spontaneous endothermic.
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separation, and modification. However, most re-

[19] , com-

search on DAP-4 is focused on its synthesis
bustion performance, hygroscopicity and safety, as
well as application in the formula of heat-resistant

explosive'” "

, and there is no report on its dissolu-
tion behavior.

In this work, the solubilities of DAP-4 in ethyl
acetate, anhydrous ethanol, acetone, formic acid,
cyclohexane, methanol, acetonitrile, n-propanol,
and deionized water in the range of 288-323 K
were systematic studied by the gravimetric method.

Linear fitting was carried out based on the Apleblat

[31-33] [34-35]

equation and Ah equation , and the influ-
ence of temperature on the solubility variation was
analyzed and discussed. The thermodynamic behav-
ior of DAP-4 was analyzed with an ideal solution
model, which may provide a reference for selecting
suitable solvent in subsequent crystallization, purifi-

cation, and surface modification of DAP-4.
1 Experimental section

1.1 Materials and Experimental apparatus

The powder samples of DAP-4 were obtained
according to the previous work'”. Its phase purity
was characterized by X-ray powder diffraction pat-
tern. Ethyl acetate, absolute ethanol, acetone, meth-
anol, acetonitrile, cyclohexane, n-propanol and for-
mic acid are all analytical reagent, and deionized
water is prepared by our laboratory.

Low temperature constant temperature bath:
DLSB-5L/40 ( £0.5 K) , Gongyi Yuhua Instrument
Co., Ltd; Thermostatic water bath: HH-8(+0.5 K) ,
Shanghai Lichen Instrument Technology Co., Ltd;
Analytical balance: ME104 (0.1 mg), Metter Tole-
do Technology (China) Co., Ltd; Pipettor: Shang-
hai Lichen Instrument Technology Co., Ltd.

1.2 Experimental

In the constant temperature oil bath of 288,
293, 298, 303, 308, 313, 318 K and 323 K, the
excess DAP-4 were added into a certain volume of
single solvent (such as deionized water, methanol,

acetonitrile and formic acid: 50 mL; ethyl acetate,
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cyclohexane, and n-propanol: 200 mL; absolute
ethanol and acetone: 100 mL), and then stirred for
24 h to obtain saturated solution.

When the dissolution of DAP-4 reaches the
equilibrium, a certain volume of saturated solvent
was injected in the weighing bottle as m, with a sy-
ringe, sealed and weighed, and its mass was denot-
ed as m,. The weighing bottle was then placed into a
drying box and dried to a constant weight, at which
time the mass was denoted as m,. All the experi-
ments were repeated for three times. Therefore, the
mole fraction solubility x; of the solute can be calcu-
lated by the following Eq.(1):

m, — m,

X, = (1)

where M, is the molecular weights of solute, g-mol™;

M, is the molecular weights of solvent, g-mol™.

The Class A uncertainty is calculated by
Eq.(Z)H”:
z’-v (Xi - Xral)2
- i=1 2
u, / pYp— (2)

where x; is mole fraction solubility; x_, is calculated
mole fraction solubility; n is the number of data
points for experimental measurement of solubility co-

efficient.
2 Results and Discussion

2.1 Solubility

Fig. 1 shows the characteristic XRD patterns of
raw DAP-4 and the solids equilibrated with different
pure solvents. As indicated, the positions of charac-
teristic peaks (26) of the equilibrium solid phase are
quite close to those of the raw DAP-4. As a result,
no solvation or polymorph transformation phenome-
non took place before and after experiments.

The solubility of DAP-4 in ethyl acetate, abso-
lute ethanol, acetone, formic acid, deionized wa-
ter, cyclohexane, methanol, acetonitrile, and
n-propanol were studied by the gravimetric method
in the range of 288-323 K. The results are shown in

N XK 2023 4% H 314 FH 1148 (1116-1123)
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Fig.1 XRD curves of raw DAP-4 and equilibrated solids in

different solvents

Table ST and Fig.2. As well known, DAP-4 is polar
compound. According to the theory of similar dis-
solve mutually, it has the largest solubility in water,
and the smallest in ethyl acetate. From the solubility
in Fig.2a and 2b, it can be seen that the dissolution
order of DAP-4 in each pure solvent is roughly as fol-
lows: ethyl acetate<cyclohexane<n-propanol<abso-
lute ethanol<acetone<methanol<acetonitrile<formic
acid<deionized water, which is consistent with the
theoretical results. The solubility of DAP-4 in deion-

ized water and formic acid is significantly better
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Fig.2 Solubilities of DAP-4 in different solvents ( (a) and

(b) are the x-T diagrams, respectively)
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than the other solvents. Except for deionized water
and formic acid, some solubility curves of DAP-4
are very close or have a certain degree of crossover,
which might be caused by the change of solute activ-
ity coefficients. In addition, the experimental results
are not completely consistent with the polarity order
of the solvents, and the degree of solubility change
with temperature is also different in various solvents.
The solubility of DAP-4 in deionized water has the
strongest dependence on temperature, while the sol-
ubility in ethyl acetate has the worst dependence on
temperature. It shows that the complex interactions
between DAP-4 and the tested solvents can be affect-
ed not only by polarity of the solvents, but also by
other factors, such as molecular size, spatial confor-
mation, and the ability to form hydrogen bonds. Ac-
cording to the above experimental results, deion-
ized water and formic acid with better solubility
were selected as co-solvents, and ethyl acetate and
n-propanol with poor solubility were selected as the
anti-solvent during purification and recrystallization
of DAP-4.

2.2 Dissolution model of DAP-4

The thermodynamic model for solid-liquid equi-
librium is helpful to predict the solubility of energet-
ic materials, which enables purification and recrys-
tallization for high quality crystal. In this paper, the
modified Apelblat model and the Ah model were
used to correlate the solubility of DAP-4 in nine pure
solvents. Meanwhile, the relative average deviation
(RAD) and the root mean square deviation (RMSD)
were used to evaluate the accuracy and applicability
of the correlation results. The relevant parameters of
two models, as well as RAD and RMSD are summa-
rized in Tables 1-2.

The relative deviation (8, Table S1) , relative
average deviation (RAD) , and root means square
deviation (RMSD) are defined by Eq.(3), Eq.(4)
and Eq.(5), respectively. The related data are seen
in Table 1.

8=Xi_xca/ (3)

X,

i

ey
g
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Table 1 Parameters of Apelbalt model

solvents A B C r RAD/10? RMSD/10°
ethyl acetate 737.7746 -36688.169 -107.9089 0.9990 1.5198 0.0226
ethanol 226.6876 -13376.9345 -33.7226 0.9983 1.4422 0.0900
acetone =179.7818 5758.4264 28.4656 0.9997 0.6102 0.0509
formic acid 418.4958 -21183,6373 -62.2278 0.9969 1.3950 1.3627
deionized water 448.73105 —24018.4136 —65.84943 0.9938 3.8644 5.0373
cyclohexane 787.5094 -40595.1831 -116.3806 0.9980 2.6472 0.0429
methanol 329.3216 -18124.8205 —48.7665 0.9927 3.1475 0.4957
acetonitrile —19.78466 —1844.827 2.97589 0.9918 1.9926 0.3693
n-propanol 1359.37341 -66641.2202 -201.3618 0.9954 4.2330 0.1238

Note: A, B, and C are the parameters of Apelbalt model. ris the correlation coefficient. RAD is relative average deviation. RMSD is root means square deviation.

Table 2 Model parameters of Ah equation for DAP-4 in dif-

ferent solvents

solvents A h r RAD/10* RMSD/10°
ethyl acetate 0.0037 908547.89 0.9898 6.7563 0.0150
ethanol 0.0064 462658.57 0.9955 2.7651 0.0849
acetone 0.0116 257360.25 0.9990 1.5245 0.0396
formic acid 0.0281 71160.77 0.9886 3.3924 37.1958
deionized water 0.6636 5564.43 0.9943 4.5371 101.8719
cyclohexane 0.0252 178157.04 0.9905 8.1881 0.0264
methanol 0.0202 150322.07 0.9867 4.4271 1.4465
acetonitrile 0.0157 173470.68 0.9972 1.9225 0.4106
n-propanol 0.0254 169833.71 0.9834 14.7538 0.0793

Note: A and h represent the model parameters of the Ah equation. r is the
correlation coefficient. RAD is relative average deviation. RMSD is

root means square deviation.

1 X, — X,
RAD:nEwa, (4)
z(xi - XL‘BI)Z
RMSD:[’.:]nf‘]]HZ (5)

where x., is the solubility coefficient value calculat-
ed by the fitted model, and n is the number of data
points for experimental measurement of solubility co-
efficient.

2.2.1 Apelbalt model

(322340 \was used

The modified Apelbalt equation
to investigate the relationship between mole fraction
solubility and temperature in different solvents, and
the fitting results are shown in Table 1. It can be
seen that the calculated values are in good agree-
ment with the experimental results. The correlation
coefficients are range from 0.9918 to 0.9997, which

indicates that the Apelbalt equation model can corre-
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late solubility data well. From Table 1, the correla-
tion coefficient (r) is close to 1, relative average de-
viation (RAD) is less than 4.2330%107%, and the
root means square deviation (RMSD) is less than
5.0373x107, indicating that the Apelbalt equation
fits the solubility coefficient data of DAP-4 in the

above solvents well.
B
Inx,=A+7+C*|n(T) (6)

where x;, T(K), A, B, and C are the solubility coef-
ficient of DAP-4, temperature, and the model pa-
rameters determined by experimental solubility coef-
ficient data, respectively.
2.2.2  Ah model

The Ah equation'***' (see Eq.(7)) proposed by
Buchowski according to the solid-liquid equilibrium
theory is used to correlate and fit the experimental
data:

11

T =X, _ 1
ln“+/\(T)]_/\h(T T) (7)

where T, is the melting point of DAP-4(638.15 K)"'",
A and h represent the model parameters of the Ah
equation, respectively. The A value reflects the noni-
deality of the solution system, and the h value repre-
sents the excess mixing enthalpy of the solution.

The model parameters, the correlation coeffi-
cient r, RAD and RMSD are shown in Table 2. It can
be seen that the fitting coefficient of the Ah equation
is between 0.9834 and 0.9990, which is slightly
worse than that of Apelbalt model. Therefore, the
Apelbalt model can better fit the solubility data in
this study than the Ah model.

At A A 2023 F %31 &
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According to the above results, for nine pure
solvents, the maximal RAD values of modified Apel-
blat model and Ah model are 4.23% and 14.75%,
respectively. And the maximal RMSD values of mod-
ified Apelblat model and Ah model are 5.03 x107°
and 101.87 x107°, respectively. For Ah model, the
solubility sequence of DAP-4 in nine pure solvents
were approximately positively correlated with the A
values and approximately negatively correlated with
the h values. The solubility increases with the in-
creasing of temperature and tends to enlarge A. The
excessively high A value also means that the solution
tends to be non-ideal, which may lead to significant
volume change and thermal effect during dissolu-
tion. Theoretically, the larger the mixing enthalpy
(h), the greater the external energy required for sol-
ute dissolution, and the greater the energy barrier to
be overcome. Therefore, it can be inferred that the
smaller the mixing enthalpy, the easier the dissolu-
tion of DAP-4. The analysis results of thermodynam-
ic models show that the experimental values of the
solubility of DAP-4 are basically consistent with the
calculated values, which is credible.

2.3 The dissolution thermodynamics of DAP-4

To better understand the dissolution process
and dissolution behavior of DAP-4 in different sol-
vents at different temperatures, the relationship be-
tween the logarithm of the solubility coefficient (x')
and the temperature will be described by Van’t Hoff
equation based on the thermodynamic principle of

[37]

solid-liquid equilibrium™”’, as shown in Eq.(8):

b

|n(X,)=a+7 (8)
where a and b are constant; the model parameters
a, b, the correlation coefficient r obtained by fitting
the Van’t Hoff equation, relative average deviation
(RAD) , and the root mean square deviation
(RMSD) value are calculated by eq.(4) and eq. (5)
are shown in Table 3.

For an ideal solution system, the Van't Hoff

equation"””’

can be used to know that the logarith-
mic value of the solubility coefficient has a linear re-

lationship with the absolute temperature:
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Table 3 Model parameters of Van't Hoff equation for DAP-4

in different solvents

solvents a b r RAD/10* RMSD/10°
ethyl acetate 1.0107 -3777.9 0.9893 6.1437 0.0985
ethanol 0.0396 —-3092.2 0.9973 2.2455 0.1641
acetone 0.0215 -2923.1 0.9986 1.5395 0.1489
formic acid 0.2654 —=2205.3 0.9880 3.5922 4.0590
deionized water 6.16 00 —3935.6 0.9921 5.1396 7.3946
cyclohexane 5.3208 -5101.3 0.9922 6.9132 0.1410
methanol 1.5645 —3252 0.9924  1.9841 0.7904
acetonitrile 0.214 —-2751.8 0.9978 4.2234 0.3919
n-propanol 6.0296 —-5229.6 0.9787 12.7337 0.2611

Note: here a and b are the parameters of Van't Hoff equation. ris the correla-
tion coefficient. RAD is relative average deviation. RMSD is root

means square deviation.

|n(X/-)=_AHd +%
RT R
According to the Van’t Hoff equation, Inx'can
find the slope of 1/T:
AG,=AH, - T,,.AS, (10)

mean

(9)

T (11)

mean

21
=N
where, AH, represents the enthalpy change, kJ-mol™;
AS, represents the entropy change, J-k™ -mol™; AG,
represents the Gibbs free energy change, kJ-mol™;

R represents the gas constant; T,

mean

represents the av-
erage temperature, K, the value is 305.22 K; n rep-
resents the number of temperature points for deter-
mining solubility, respectively**

The calculation results are shown in Table 4.
The dissolution enthalpy changes of DAP-4 in the in-
vestigated solvents are all positive, indicating that
all dissolution is endothermic. Meanwhile, AS,>0,
indicating that the dissolution process is entropy in-
creasing process. What's more, the Gibbs free ener-
gies of DAP-4 dissolution process are all greater than
0, indicating that the dissolution processes are
non-spontaneous. It can be seen from eq. (9) and
Table 4 that the values of AG, decrease with the in-
creasing of temperature, indicating that higher tem-
perature is beneficial to dissolution. Positive AH, val-
ues were observed in tested solvents and the reason
may be that there are strong interactions between

Sttt
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Table 4 Thermodynamic functions of DAP-4 in different sol-

vents
solvents AH, - AS, - - A, -
/ kJ-mol™ /1-k " mol™  /kJ-mol™
ethyl acetate 31.41 8.4026 28.8448
ethanol 25.71 0.3292 25.6081
acetone 24.30 0.1788 24.2481
formic acid 18.33 2.2065 17.6614
deionized water 32.72 51.2141 17.0887
cyclohexane 42.41 44.2370 28.9100
methanol 27.04 13.0073 23.0667
acetonitrile 22.88 1.7842 22.3339
n-propanol 43.48 50.1299 28.1782
Note: T .  isaverage temperature. AH is the enthalpy change. AS is the en-

thalpy change. AG, is the enthalpy change.

DAP-4 and solvent molecules, while the newly
formed bond energy between DAP-4 and solvent
molecules are not enough to compensate for the en-
ergy required to break the original associative bonds
of various solvents. The DAP-4 molecule contains
various groups such as HCIO,, NH,". Hence, the
dissolution of DAP-4 in various tested solvents may
cause different interactions such as dipole - dipole,

[43]

hydrogen bonding*’. These interactions may be the
reason that DAP-4 disrupts the alignment of solvent
molecules and increases the entropy (AS,). Further-
more, the solubility of DAP-4 is positive correlated

with the values of AG, in nine pure solvents.
3 Conclusion

In this work, the gravimetric method was used
to study the dissolution behavior of DAP-4 in nine
pure solvents at different temperatures (288-323 K).
Furthermore, the dissolution model and the thermo-
dynamic parameters of DAP-4 were obtained.

(1) The results shown that the solubility of
DAP-4 in ethyl acetate, formic acid, absolute etha-
nol, acetone, and deionized water increases with
the increasing of temperature and polarity. The solu-
bility in water has the highest dependence on tem-
perature and polarity, while the solubility in ethyl
acetate has the lowest dependence on temperature

and polarity. Therefore, deionized water can be con-

CHINESE JOURNAL OF ENERGETIC MATERIALS

sidered as a suitable solvent for purification and re-
crystallization of DAP-4.

(2) The Apelbalt equation and the Ah equation
were used to establish the dissolution model of
DAP-4. The results show that the Apelbalt model has
a better fit than the Ah model, which can better illus-
trate the dissolution behavior of DAP-4. In other
word, the Apelbalt model can be used to predict the
solubility data at other temperature in the system,
which can provide a theoretical reference for the
crystallization.

(3) In an ideal solution system, the Van’t Hoff
equation is used to calculate the thermodynamic
function during the dissolution process. The results
show that AH,, AS, and AG,values of DAP-4 are all
greater than zero, indicating that the dissolution is

an endothermic, entropy increase and

non-spontaneous process. Therefore, increasing the
temperature is conducive to dissolution, which is

consistent with the experimental data.
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