文章编号:1006-9941(2022)05-0502-09

基于多孔介质的某大口径装药床点传火特性

廖万予,薛晓春

(南京理工大学 能源与动力工程学院, 江苏 南京 210094)

摘 要: 为了深入研究主装药的装填密度对点火药燃气在药床内传播特性的影响,搭建了某大口径密实装药床点传火系统试验平台,试验拍摄记录了火焰序列图及部分测压点压力变化情况;采用多孔介质模型模拟药室内的颗粒药床,建立了与试验装置对应的点传火系统模型,对点火药燃气在颗粒药床中的流动过程进行数值模拟,将模拟计算结果与试验结果进行对比,验证模型的可靠性,再计算不同装填密度下燃气在药床内温度场和压力场的传播特性。结果表明,计算所得与试验拍摄的火焰传播序列过程及试验测得的压力曲线均吻合较好,验证了模型的可靠性;在任意孔隙率条件下,0~10 ms时,火焰阵面轴向位移的发展较快,轴向速度由25~30 m·s⁻¹减小到10 m·s⁻¹,而10~40 ms轴向速度逐渐减小到2~3 m·s⁻¹;同样,在任意孔隙率条件下,火焰阵面径向位移的发展集中在2.2~3.0 ms时段内,且3.0 ms时径向速度都将减小到2~2 m·s⁻¹,但较大的孔隙率初始时刻的径向速度较大;当孔隙率由0.3 增大至0.5 时,药室内不同位置处的压力差由0.24 MPa减小到0.20 MPa,压力差减小了16.7%,点火的均匀性和瞬时性提高。随着孔隙率增大,点火传播过程中药室内火焰阵面的轴向和径向阻力减小,火焰阵面沿轴向的扩展位移越大,轴向和径向上的火焰传播初速度也越大,但末速度趋于一致;药室内的压力越小,药室内的压力差也减小。

关键词:装填密度;多孔介质模型;点传火;孔隙率

中图分类号: TJ55; O359

文献标志码:A

DOI:10.11943/CJEM2021172

1 引言

主装药的点传火是影响火炮发射成功的关键因素。点火结构分为底部点火结构和中心传火管点传火 结构。目前,在大口径火炮中,由于装填密度大,孔隙 率低,因此广泛采用了中心传火管为主要结构的点传 火系统,且大多采用管状药束。该点火过程由底火击 发开始,而后逐步点燃管状药条。药条被点燃后产生 高温高压的气体,经中心传火管壁的多个传火孔喷出, 进入主装药室后点燃主装药;主装药燃烧后再次产生 高压气体,顺利推动弹丸发射。由此可知,主装药能否 被顺利引燃是点传火成功的关键。点火燃气进入药室

收稿日期: 2021-06-24; 修回日期: 2021-08-10 网络出版日期: 2022-03-24 基金项目: 国防基础研究项目 作者简介: 廖万予(1997-),男,硕士研究生,主要从事含能材料燃 烧推进理论与技术研究。e-mail:846605032@qq.com 通信联系人: 薛晓春(1985-),女,副教授,主要从事含能材料燃烧 推进理论与技术研究。e-mail:xiaochun13476@163.com 后形成的温度场和压力场,都将影响到主装药的引燃: 若温度场传播速度过慢,将影响药室内点火的均匀性 和瞬时性;若压力场传播不均或压力波过大,会导致装 药引燃失败,甚至发生发射安全性事故。然而,药室内 温度场和压力场的形成,又与燃气在药室中流动时,受 到的阻力相关。因此,研究主装药在药室中的分布特 性对点火药燃气在药室中传播特性的影响尤其重要。

对于点传火过程,刘子豪等^[1]建立了底火射流的 一维两相流模型,对底火两相射流在传火管内的传播 过程进行研究,得到传火管内传火变化规律,但没有将 点火系统和特定药床结合进行分析。张艳明等^[2]利用 数值模拟研究了粒状发射药床点火燃烧的应力情况, 模型中考虑到了中心传火管的点火系统。过去的点火 过程研究一般只针对药室内发射药的燃烧,大多数将 点火系统做了简单的替换;或是对传火管内点火药的 传播规律研究较多,但对于将其与点火药燃气在药室 中的传播过程结合的研究较少。高阳^[3]以Fluent软件 为平台,模拟对象为球、柱型颗粒填充而成的圆管型多 孔介质燃烧室,将软件自带的模型修改为适用于多孔

引用本文:廖万予,薛晓春.基于多孔介质的某大口径装药床点传火特性[J].含能材料,2022,30(5):502-510. LIAO Wan-yu, XUE Xiao-chun. Ignition and Propagation Characteristics of a Large-diameter Propellant Bed Based on Porous Media[J]. *Chinese Journal of Energetic Materials*(Hanneng Cailiao),2022,30(5):502-510. 介质的 N-K模型,并在冷流状态下对模型进行了验证; 刘桂兵等^[4]对多孔含能颗粒填充的非稳态传热过程进 行了研究,模拟了填充药床内的温度变化特性,并总结 了不同孔隙率影响下填充床的温度变化规律;Kamyar 等^[5]同样利用多孔介质模型模拟填充床内颗粒物的湍 流运动,及不同颗粒物模型对湍流强度的影响特性,证 明了将多孔介质模型作为填充床设计工具的可行性。 药室内温度场和压力场的传播是否良好将决定主装药 能否顺利点燃,装药的装填密度或初始孔隙率对温度 传播特性和压力传播特性有极大影响,用合理的方法 处理装填密度或初始孔隙率不同的装药颗粒在药室内 的阻力分布特性十分重要,而利用多孔介质模型能够 很好地模拟点火燃气在主装药床内的传播过程,再结 合传火管内传火变化规律,即可完整地模拟密实装药 床点传火过程。

本研究以某105 mm大口径火炮密实装药床为背景,基于可燃中心点传火管的点传火方式,建立多孔介质模型并采用Fluent软件模拟了高温高压的点火药燃 气在主装药床内的传播过程,获得了药室内温度、压力 演化特性及等温面传播速度,并通过与前期设计的点 传火模拟试验平台的测试数据进行了对比,验证了仿 真模型的可靠性;在此基础上,进一步研究了不同的主 装药装填密度对药室内特性参数的影响规律。

2 点传火系统的模拟试验装置

图1为试验装置实物图,主要由金属套筒、前堵 头、后堵头、固定支架、可视化药室、击发机构、中心点 传火管等组成,装置右端的后堵头为泄压堵头,用来对 整个装置进行泄压,保证气体安全有效地排出。图2 为试验所采用的中心点传火管。点传火管全长 268 mm, 点火管的壳体内径 18.5 mm, 外径 23 mm, 四周开有不同排序方式的传火孔,即:沿传火管周向有 4列传火孔,每列分别有3个或4个传火孔,每个传火孔 的孔径为6mm,共计14个传火孔。其中,首孔与底火 端面的距离为120 mm,其余每个传火孔按40 mm等 距离分布。且传火管内装有苯奈药条,药条长约 250 mm。为保证主装药点传火过程的安全性,实验 主装药采用模拟发射药及少量真药混合装填的方式, 其中模拟发射药比重、形状与真实发射药相当,模拟药 粒直径为8mm, 高为13mm, 以保证装填后孔隙率与 真实药床接近。模拟发射药与真实发射药体积比为 42:1,且模拟药粒的强度较真实发射药高,不易破碎,

图1 密实装药床点传火试验装置实物图
1一前堵头,2一上固定支架,3一金属套筒的后堵头,
4一破孔压螺,5一可视化药室,6一金属套筒,7一下固定支架,
8一击发机构

Fig.1 Physical drawing of test device

1—front plug, 2—upper fixing bracket, 3—rear plug of metal sleeve, 4—hole breaking pressure screw, 5—visual chamber,
6—metal sleeve, 7—lower fixing bracket, 8—firing mechanism

图 2 中心点传火管实物图 Fig.2 Physical drawing of central point fire pipe

也不易燃烧。药室由耐高温高压的可视化有机玻璃制成,长为490 mm,内径为110 mm。

图 3 为试验测试系统示意图,系统通过电点火的 方式击发点传火实验装置的底火,进而引燃点传火管 内的苯萘药条。药条燃烧后,产生的高温高压火焰由 传火孔喷入药室内,在药室中进行传播。试验时,采用 高速摄像仪记录点火火焰在药床中传播的序列过程。 同时,装置顶端开设4个测压孔,首个测压孔与左端底 火的距离为140 mm,且每两个相邻测压孔的间距约 为100 mm,用以记录药室内不同位置测压孔的压力 变化情况,揭示点火药气体进入药室后的传火规律。

图 3 密实装药床点传火试验测试系统示意图 1一瞬态记录,2一电荷放大器,3一脉冲电点火装置, 4一电脑,5一高速录像系统,6一点传火实验装置

Fig.3 Schematic diagram of test system

1—transient recording, 2—charge amplifier, 3—pulse electric ignition device, 4—computer, 5—high speed video recording system, 6—ignition and propagation experimental device

3 密实装药床点传火过程的数值仿真模型

3.1 物理模型

图 4 为该点传火系统的物理模型示意图。当底火 击发后,点火药开始燃烧,产生的高温高压燃气从中心 点传火管管壁上的小孔流入药室内,在药室内形成温 度及压力波阵面。其中,采用多孔介质模型来模拟药 室内自然堆积的假药粒,可更为方便地分析高温高压 气体进入这种颗粒药床时的流动及传热等现象。

图 4 密实装药床点传火物理模型示意图

1一中心点传火管,2一模拟发射药粒,3--药室

Fig.4 Schematic diagram of the ignition and propagation physical model of dense charge bed

1—central ignition tube, 2—granular propellant simulant, 3—chamber

在模拟实验的基础上,针对上述密实装药床点传 火的物理模型,采用如下简化假设:

(1)由于试验中可视化药室材料的特殊性,点火燃气与壁面换热极少,故忽略点火药燃气与药室壁面

的换热作用;

(2)为方便计算,将点火药燃烧产生的气体视为 理想气体;

(3)忽略气体辐射和颗粒在高温下可能产生的催 化效应;

(4)忽略热弥散效应;

(5)药室由球形的刚性假药粒填充而成,假药粒 是均匀分布的灰体;

(6) 药室壁面边界无滑移且绝热;

(7)整个点传火过程发生时间极短,火焰传播速 度快,故忽略重力的作用。

3.2 数学模型

基于以上简化假设,建立下述基本控制方程^[6]: 连续性方程:

$$\frac{\partial(\phi\rho_{\rm g})}{\partial t} + \nabla \cdot (\phi\rho_{\rm g}u) = 0 \tag{1}$$

式中, ρ_{g} 为气体密度,kg·m⁻³; ϕ 为多孔介质区域的孔隙 率;u为气体速度矢量,m·s⁻¹。

动量方程:

$$\frac{\partial(\phi\rho_{\rm g})}{\partial t} + \nabla \cdot (\phi\rho_{\rm g}u^2) = -\phi\nabla\rho_{\rm g} + \nabla \cdot (\phi\tau) + S_{\phi}$$
(2)

式中, **r** 为黏性应力张量, kg·m⁻³; *S*_o为动量阻力项, 由 于试验中主装药主要采用的是惰性假药粒, 因此, 数值 模拟采用动量阻力来表示颗粒的阻碍作用。

能量方程:

$$\frac{\partial(\phi\rho_{g}CT)}{\partial t} + \nabla \cdot (\phi\rho_{g}CVT) = \nabla \cdot (\phi\lambda\nabla T)$$
(3)

式中,*C*为气体的比热容,J·(kg·K)⁻¹;V为气体的体积,m³;*T*为气体的温度,K; λ 为气体的导热系数,W·(m·K)⁻¹。

3.3 多孔介质模型

从结构上来看,发射药粒在药室内填充构成的填 充床结构,属于颗粒性多孔介质,因此采用多孔介质模 型进行计算。对于一般的多孔介质模型方程,对其进 行模块化和求解较难,因此这里利用N-K湍流模型,将 多孔介质模型改写为动量方程的同时,对动量方程中 的雷诺应力进行模化,转化为输运方程,湍流对动量方 程的影响等效为有效黏性系数,体现在输运方程中,用 以模拟假药粒对流体流动的阻碍。在圆柱坐标系下, 动量阻力项方程如(4)式^[7]:

含能材料

式分解成分别为 x 和 r 方向上动量阻力方程^[3]:

$$S_{\phi x} = \frac{\partial}{\partial x} \left(u_{\text{eff}} \frac{\partial u_1}{\partial x} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r u_{\text{eff}} \frac{\partial u_2}{\partial x} \right) - \frac{\partial p}{\partial x} - \left(\frac{u_{\text{eff}}}{K} + b \rho_g \phi u_2 \right) u_1$$

$$S_{\phi r} = \frac{\partial}{\partial x} \left(u_{\text{eff}} \frac{\partial u_1}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r u_{\text{eff}} \frac{\partial u_2}{\partial x} \right) - \frac{2 u_{\text{eff}} u_2}{r^2} -$$
(5)

$$\frac{\partial p}{\partial r} - \left(\frac{u_{\text{eff}}}{K} + b\rho_g \phi u_2\right) u_2 \tag{6}$$

式中, u_1 和 u_2 分别是轴向和径向的气体分速度,m·s⁻¹; μ_{eff} 为有效黏性系数,这里数值上与湍流的有效扩散系数 Γ_* 相等;系数K为渗透率,b为惯性项系数。

有效黏性系数μ_{eff}定义式为:

$$\mu_{\rm eff} = \mu_{\rm lam} + \mu_1 \tag{7}$$

即层流和湍流黏性系数之和。采用 k-ε 方程模化 湍流粘度,则有:

$$\mu_1 = 0.09 \rho_g \frac{k^2}{\varepsilon} \tag{8}$$

其中,湍流动能k方程为:

$$0.18 \frac{\rho_{g}}{\varepsilon} \left[\left(\frac{k \partial u_{1}}{\partial x} \right)^{2} + \left(\frac{k \partial u_{2}}{\partial r} \right)^{2} + \left(\frac{k \partial u_{1}}{\partial x} + \frac{k \partial u_{2}}{\partial r} \right)^{2} + \left(\frac{k u_{2}}{r} \right)^{2} \right] = S_{\phi} + \rho_{g} \varepsilon - \rho_{g} \varepsilon_{0}$$

$$(9)$$

耗散率 ε 方程为:

$$2.88\mu_1 \frac{\varepsilon}{k} \left[\left(\frac{\partial u_1}{\partial x} \right)^2 + \left(\frac{\partial u_2}{\partial r} \right)^2 + \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial r} \right)^2 + \left(\frac{u_2}{r} \right)^2 \right]$$
$$= S_{\phi} + 1.92\rho_g \frac{\varepsilon^2}{k} - 1.92\rho_g \frac{\varepsilon_0^2}{k_0} \tag{10}$$

其中, k_0 和 ε_0 的求解公式为:

$$k_0 = 3.7(1 - \phi)\phi^{3/2}\bar{u}^2 \tag{11}$$

$$\varepsilon_0 = 39\phi^2 (1 - \phi)^{5/2} \bar{u}^3 / D \tag{12}$$

式中,D为颗粒的平均直径,mm; \bar{u} 为本征平均速度, m·s⁻¹。

因此,针对该填充床结构的多孔介质模型,改变渗透率 *K*和惯性项系数 *b*的值,将影响药室中假药粒对高温高压燃烧气体的阻碍作用。*K*和 *b*通过 Kuwahara 等^[8-10]总结的经验公式计算:

$$K = \frac{\phi^3}{144(1-\phi)^2} D^2$$
(13)

$$b = 2.3 \frac{1 - \phi}{\phi^3 D} \tag{14}$$

3.4 计算域

图 5 为所研究的主装药床计算域。计算域采用结构化网格,经网格无关性验证后,取传火孔处网格尺寸

图5 流体计算域网格二维视图

1一人口边界,2一药室内网格,3一墙体固定边界,4一对称边界 **Fig.5** 2D view of grid in fluid computing domain

1—entrance boundary, 2—chamber interior grid, 3—fixed boundary of wall, 4—symmetric boundary

为0.2 mm,其余的网格尺寸为0.5 mm,共计96896个 网格单元。求解时选择基于压力求解器,时间步长取 1×10⁻⁵ s,并经过了时间步长无关性验证。

3.5 初始条件与边界条件

药室内初始环境压力为101325 Pa,温度为300 K。 根据经典内弹道理论^[6]计算,中心传火管内燃烧气体 产物的温度大致在2000~2500 K,因此传火孔入口气 体温度设置为2500 K。结合试验用模拟发射药尺寸, 颗粒等效粒径设置为12 mm。实际药床内孔隙率计 算公式^[11]为:

$$\phi_{\rm cy} = 1 - \frac{m_{\rm s, cy}}{m} = 1 - \frac{\rho_{\rm s} V_{\rm s}}{\rho_{\rm s} V}$$
(15)

式中, ϕ_{cy} 为填充床内孔隙率; $m_{s,cy}$ 为实际填充床内颗 粒总质量,kg;m为药室内填满颗粒时相应质量, ρ_s 为 模拟发射药颗粒密度,kg·m⁻³; V_s 为发射药颗粒体积, V为药床内总容积, m^3 。根据文献[12]可知,颗粒等 效粒径为12 mm时,其自然堆满整个药室的平均孔隙 率为 0.157。而本试验中,主装药的装填密度为 0.7 kg·dm⁻³,主装药床的容积经计算为4.545 dm³,模 拟发射药密度为1400 kg·m⁻³。由(15)式可知该试验 的孔隙率为 ϕ =0.41。

如图 5 所示,药室壁面设为墙体固定边界,边界无 滑移且绝热;中心传火孔采用质量流量入口条件,每个 传火孔的质量流量均匀分配,并通过中心传火管的一 维两相流方程计算出该质量流量。

4 模拟结果与对比分析

4.1 计算模型验证

结合上述所建立的模型,对试验工况下的点火过 程进行了相应的数值模拟。图6为利用高速摄像所拍 摄的点传火序列图,图7为仿真计算所得到的温度云 图。由图6可知,整个过程火焰发展均匀,火焰阵面清 晰,点火火焰能够快速且均匀沿药床的轴向和径向传

图6 部分点传火序列图

Fig.6 Partial ignition and propagation sequence diagram

图 7 仿真计算温度云图 Fig.7 Temperature nephogram of simulated calculation

50

d. *t*=16.2 ms

含能材料

播。如图 6a 所示, 传火孔打开后, t=3.2 ms时, 拍摄到 的图像中火焰面不明显, 但可以观察到径向火焰面的 发展较轴向更快。如图 6b 所示, 点火管内的点火药生 成燃气通过传火孔向外喷射, 已形成明显的火焰面, 火 焰面沿径即将接触药室壁面。如图 6c 所示, 此时中心 传火管传火孔全部打开, 且火焰面已沿径向充分扩展 至药室壁面, 而轴向还未充分扩展, 但发展速度显著加 快。当 t=16.2 ms, 图 6d 中火焰面沿轴向和径向基本 上充满整个药室。对比图 6e 和图 6f 可以发现, 21.2 ms以后, 火焰阵面已经发展非常缓慢, 药室两端 堆积了大量假药粒。

由图 7 可知,数值计算得到的温度云图与试验拍 摄图像具有良好的一致性。为验证这一结论,利用数 值计算得到的温度场等温面近似等效于火焰阵面,分 别获得了如图 8 和图 9 所示的试验和数值模拟的火焰 阵面轴向和径向位移对比曲线图。由图 8 可知,t=3~ 10 ms时,轴向位移的增长速度较快,试验和仿真的轴 向位移增长趋势一致,最大差值为 4.02 mm,误差为 1.8%;t=10 ms后仿真火焰阵面落后于试验,原因为试

图 8 火焰阵面轴向位移-时间试验与模拟对比曲线 Fig.8 Comparison of axial displacement histories of flame front between experiment and simulation

图 9 火焰阵面径向位移-时间试验与模拟对比曲线 **Fig.9** Comparison of radial displacement histories of flame front between experiment and simulation

验设有泄压装置,减小了实际火焰的轴向传播阻力,但 仿真得到的等温面传播趋势和试验火焰阵面仍基本一 致,最大差值为24.35 mm,误差为6.4%。图9为火焰 阵面径向传播位移随时间的变化曲线。仿真计算得到 的等温面的径向位移在 t=2.4~3.0 ms时稍落后于试 验,最大差值为3.37 mm,误差为8.6%。结合图7~ 图9可知,药室径向尺寸远小于轴向尺寸。如图7a所 示,t=3.2 ms时,火焰阵面已沿径向接近药室壁面,但 每个传火孔所产生的火焰还未交汇,每簇火焰中心间 距大,火焰轴向宽度小,火焰阵面沿轴向的发展相对落 后,因此如图6a所示,未交汇的火焰导致拍摄序列图 中火焰面不明显。因此,数值模拟结果与试验吻合较 好,验证了所建立模型的合理性。

图 10 为测压孔 1 和 2 处对应的数值计算及试验测 得的压力对比曲线图。由图 10 可知,试验中,t=0~7 ms 时,测压孔 1、2 压力基本相等,二者在 7~8 ms开始有 了明显的区别,由于药室的右端设有泄压装置,所以距 离泄压装置较近的测压孔 2 最终压力略小于测压孔 1, t=15 ms时,测压孔 1 压力为 1.20 MPa,测压孔 2 压力 为 0.90 MPa。数值计算测得的压力变化趋势与试验 吻合,但后期计算得到的压力略大于实验,测压孔 1 仿 真计算结果与实验最大差值为 0.07 MPa,误差为 6.4%;测压孔 2 与实验最大差值为 0.07 MPa,误差为 7.6%。因此,综上所述,所建立的模型可靠,可用于模 拟点火火焰在药床中的传播特性。

4.2 孔隙率对火焰传播及压力影响的特性

为了研究不同装填密度下,点火药燃气在主装药 床中的传播特性,针对不同孔隙率进行了多工况的数 值模拟。过小的孔隙率差异将导致模拟计算所得结果 的差异很小,难以进行比较,因此选择φ=0.30、φ=0.41 和φ=0.50这3种数值模拟效果较好、计算所得物理参

含能材料 2022年 第30卷 第5期 (502-510)

数差异明显的孔隙率进行分析,其中φ=0.41为真实的 试验工况。

图 11 为计算获得的不同孔隙率下药室内火焰阵 面轴向传播位移随时间的变化图。由图11可知, t=37.5 ms时,对于 $\phi=0.30$,火焰阵面轴向扩散位移为 392.2 mm;对于φ=0.41,其轴向位移为405.2 mm;对 于 ϕ =0.50,其轴向位移为425.3 mm。且任意时刻下, 孔隙率越大,火焰阵面沿轴向的扩展位移也越大;另 外,可以明显发现,任意孔隙率下,t=0-10 ms时,轴向 位移的增加速度明显。图12为计算获得的不同孔隙 率下火焰阵面轴向传播速度的变化图。由图12可知, 计算初始时刻, φ=0.30时, 火焰阵面的传播速度为 24 m·s⁻¹, ϕ =0.41 时, 其传播速度为 27.5 m·s⁻¹, **φ**=0.50时,其传播速度为30m·s⁻¹,孔隙率越大,火焰 阵面沿轴向的传播速度也越大。当t=0~10 ms,轴向 速度较大但以较快的速度减小,而随着时间的扩展, t=10 ms后,速度变化率减小,轴向速度较小,因此结 合图 11 可知, t=0-10 ms, 火焰阵面轴向位移的发展 速度快,t=10 ms后发展速度减缓。最终3种孔隙率的

图 12 模拟计算不同孔隙率的轴向速度变化的对比 **Fig.12** Comparison of axial velocity changes with different porosities from simulated calculation

传播速度都趋于 2~3 m·s⁻¹。产生上述变化的主要原因是药床内颗粒装填密度的变化引起了初始孔隙率的变化,孔隙率影响了火焰传播过程中药床内的阻力。 孔隙率越大,点火传播过程中药床内的轴向阻力越小, 火焰阵面沿轴向传播的初始速度越大,火焰阵面越快 到达药室右端壁面;但孔隙率的变化基本不影响火焰 阵面 t=10 ms以后的轴向传播速度。

图 13 为不同孔隙率下药室内火焰阵面径向传播 位移随时间的变化图。火焰阵面径向位移的发展集中在 t=2.2-3 ms。由图 13 可知,t=3.0 ms时,对于 $\phi=0.30$, 火焰阵面的轴向扩散位移为 32.2 mm;对于 $\phi=0.41$, 其轴向位移为 35.0 mm;对于 $\phi=0.50$,其轴向位移为 37.6 mm。且任意时刻下,孔隙率变大,火焰阵面沿径 向的扩展位移也越大。图 14 为计算获得的不同孔隙 率下火焰阵面径向传播速度的变化图。由图 14 可知, 初始时刻, $\phi=0.30$ 时,火焰阵面径向传播速度最小,为 51.1 m·s⁻¹; $\phi=0.50$ 时,其径向传播速度最大,为 52.8 m·s⁻¹。随着时间的扩展,3种孔隙率下,火焰阵 面的径向传播速度迅速变小,当t=3 ms,径向速度都 将减小到 20~22 m·s⁻¹。火焰阵面沿径向更早到达药

图 13 模拟计算不同孔隙率径向位移变化的对比 Fig.13 Comparison of radial displacement changes with different porosities from simulated calculation

图 14 模拟计算不同孔隙率的径向速度变化的对比 **Fig.14** Comparison of radial velocity changes with different porosities from simulated calculation

室壁面,主要原因除了上述分析的药室径向尺度远小 于轴向外,另一个原因在于火焰阵面的径向传播速度 远大于轴向传播速度。综合轴向和径向的位移与速度 曲线图,表明点火火焰传播过程中,孔隙率影响了药床 内轴向和径向的阻力,促进火焰在药床内沿两个方向 的均匀扩散传播;孔隙率越高,轴向和径向阻力同时减 小,这有利于火焰阵面的快速传播。

图 15 和图 16 分别为计算获得的不同孔隙率下, 测压孔 1、2 处对应的压力变化对比曲线。由图 15 和 图 16 可知,任意时刻下,对应测压点的压力随着孔隙 率的增大而减小。对于 ϕ =0.30,测压点承压最大,且 在该孔隙率条件下,t=15 ms时,测压孔 1 压力为 1.31 MPa(图 15),测压点 2 压力为 1.06 MPa(图 16); 对于 ϕ =0.41,测压点 1 压力为 1.21 MPa(图 15),测压 点 2 压力为 0.99 MPa(图 16);对于 ϕ =0.50,测压点承 压最小,测压点 1 压力为 1.16 MPa(图 15),测压点 2 压力为 0.96 MPa(图 16)。主要原因是孔隙率的变化 导致主装药床内气体容积的变化,孔隙率减小意味着 气体容积的减小,点火药燃气进入药室后,迅速充满药 室内的气体空间,进而导致压力也随之迅速升高。

图 16 模拟不同孔隙率下测压孔 2 压力变化的对比 **Fig.16** Comparison of pressure changes of pressure gauge 2 with different porosities from simulation

综上所述, 孔隙率的大小影响药床内不同位置压 力的大小, 而这就进一步影响火焰传播的均匀和瞬时 性。综合图 15 和图 16 可知, φ=0.30 时, 测压孔 1 和 2 的压力差最大值为 0.24 MPa; φ=0.41 时, 测压孔 1 和 2 的压力差最大值为 0.22 MPa; φ=0.50 时, 测压孔 1 和孔 2 的压力差最大值为 0.20 MPa。3种孔隙率下压 力差最大值都是在 t=16 ms时产生的。两处测压点的 同一时刻下压力差值较小, 意味着点火的均匀性和瞬 时性较好, 而孔隙率越大, 压力差越小。

5 结论

(1)仿真计算得到的药室内温度云图与试验中记录的火焰传播序列图呈现良好的一致性;两者火焰阵面沿轴向与径向位移最大误差分别为6.4%和8.6%;同时,数值计算和试验得到的药室内不同位置的压力曲线也吻合较好,最大误差为7.6%。因此,所建立的模型可靠,可用于模拟点火火焰在药床中的传播特性。

(2)在不考虑发射药燃烧的情况下,改变装填密 度,针对孔隙率 φ=0.30、0.41,0.50 进行了多工况的数 值模拟。结果表明,在模拟计算的3种孔隙率条件下, t=3~10 ms时,火焰阵面轴向位移的发展较快,随着时 间的发展,轴向速度由25~30 m·s⁻¹减小到10 m·s⁻¹, 而 t=10~40 ms 轴向速度逐渐减小到 2~3 m·s⁻¹;同样, 在任意孔隙率条件下,火焰阵面径向位移的发展集中 在 t=2.2~3 ms, 且 t=3 ms 时径向速度都将减小到 20~22 m·s⁻¹,但较大的孔隙率初始时刻的径向速度 大。孔隙率越大,点火传播过程中药室内火焰阵面的 轴向和径向阻力减小,火焰阵面沿轴向的扩展位移越 大,轴向和径向上的火焰传播初速度也越大。另外,除 火焰阵面位移和速度的发展外,孔隙率越大,药室内的 压力越小,当φ由0.30增至0.41,由0.41增至0.5时, 药室内不同位置处的压力差分别由 0.24 MPa 减小到 0.22 MPa、0.22 MPa 再减小到 0.20 MPa, 压力差稳定 变小,且共减小了16.7%,也就是说,点火的均匀性和 瞬时性提高。因此,提升主药床的装填密度的同时,更 应注意点火时的均匀性。

参考文献:

- [1] 刘子豪,刘东尧. 底火两相射流在传火管内传播过程的一维模型及数值模拟[J]. 弹道学报, 2018, 30(4): 66-70.
 LIU Zi-hao, LIU Dong-yao. The propagation characteristics of ignition flame in propellant particle bed based on media model[J]. *Journal of Ballisitics*, 2018, 30(4): 66-70.
- [2]张艳明,罗兴柏,甄建伟,等.点火过程中粒状发射药药床应力

研究进展[J]. 中国测试, 2014, 40(增刊1): 109-113. ZHANG Yan-ming, LUO Xing-bo, ZHEN Jian-wei, et al. The advance of research on stress of propellant bed during ignition[J]. *China Measurement & Tset*, 2014, 40(Suppl.1): 109-113.

- [3] 高阳.多孔介质内层流与湍流气相燃烧的数值模拟[D].大连: 大连理工大学,2012.
 GAO Yang. Numerical simulation of gaseous laminar and turbulent combustion within porous media[D]. Dalian: Dalian University of Science and Technology, 2012.
- [4] 刘桂兵.含能颗粒多孔填充床的传热特性研究[D].南京:南京 理工大学, 2016.
 LIU Gui-bing. Study on heat transfer characteristics if the energetic particles porous pocked-bed[D]. Nanjing: Nanjing University of Science and Technology, 2016.
- [5] KAMYAR M, ALI A, ECKEHARD S. CFD simulation of cross-flow mixing in a packed bed using porous media model and experimental validation [J]. Computational Particle Mechanics, 2019, 6: 157-162.
- [6] 刘承,陶如意,薛绍,等.基于多孔介质模型的点火火焰在发射药颗粒床中的传播特性[J].含能材料,2020,28(10):969-974.
 LIU Cheng, TAO Ru-yi, XUE Shao, et al. The propagation characteristics of ignition flame in propellant particle bed based on porous media model[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020,28(10):969-974.

- [7] KUWAHARA F, NAKAYAMA A, KOYAMA H. A numerical study of thermal dispersion in porous media [J]. *Journal of Heat Transfer*, 1996, 118(3): 756–761.
- [8] KUWAHARA F. A macroscopic turbulence model for flow in a porous medium [J]. Journal of Fluids Engineering, 1999, 121 (2): 427-433.
- [9] KUWAHARA F, NAKAYAMA A. Numerical determination of thermal dispersion coefficients using a periodic porous structure[J]. *Journal of Heat Transfer*, 1999, 121(1): 160–163.
- [10] DOBREGO K V, CHORNYI A D. Parallels between the regimes of turbulent and filtration combustion of gases in inert porous media [J]. *Journal of Engineering Physics & Thermophysics*, 2001, 74(3): 581–590.
- [11] 王星,王玉璋.颗粒填充型复合材料有效导热系数的数值计算 方法[J].材料导报,2013,27(20):143-147.
 WANG Xing, WANG Yu-zhang. Numerical calculation method for effective thermal conductivity of particle filled composites[J]. *Material Review*, 2013, 27(20): 143-147.
- [12] 谢涛,何雅玲,陶文铨.随机结构多孔介质等效热导率数值计算[J]. 工程热物理学报,2012,33(7):1197-1200.
 XIE Tao, HE Ya-ling, TAO Wen-shuang. Numerical calculation of effective thermal conductivity for complex multiphase materials[J]. *Journal of Engineering Thermophysics*, 2012, 33 (7): 1197-1200.

Ignition and Propagation Characteristics of a Large-diameter Propellant Bed Based on Porous Media

LIAO Wan-yu, XUE Xiao-chun

(School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing 210094, China)

Abstract: To investigate the influence of the loading density of main propellant charge on the propagation characteristics of ignition charge gas in the granular propellant bed, the test platform for ignition and propagation of a large-diameter dense propellant bed was established, and the flame sequence diagram and the pressure changes of partial pressure gauges were recorded in tests. The porous medium model was used to simulate the granular propellant bed in the charge chamber, and the ignition and propagation model corresponding to the test device was established to numerically simulate the flow process of ignition charge gas in the granular propellant bed. The simulation results were compared with the test results to verify the reliability of the model, and then the propagation characteristics of temperature and pressure fields of gas in the propellant bed with different loading densities were calculated. The results show that the calculated results are in good agreement with the experimental flame propagation sequence process and the experimental pressure histories, which verifies the reliability of the model. Under the condition of any porosity, the axial displacement of flame front develops rapidly and the axial velocity decreases from $25-30 \text{ m} \cdot \text{s}^{-1}$ to $10 \text{ m} \cdot \text{s}^{-1}$ during 0-10 ms, and the axial velocity decreases to $2-3 \text{ m} \cdot \text{s}^{-1}$ during 10-40 ms. Similarly, under the condition of any porosity, the development of radial displacement of flame front is concentrated during 2.2-3 ms, and the radial velocity decreases to 20-22 m·s⁻¹ at 3 ms. However, the radial velocity at the initial time is large for large porosity. When the porosity increases from 0.3 to 0.5, the pressure difference at different positions in the chamber decreases 16.7% from 0.24 MPa to 0.20 MPa, and the uniformity and instantaneity of ignition are improved. With the increase of porosity, the axial and radial resistances of the flame front in propagation process decrease, the axial expansion displacement of the flame front and the initial velocity of flame propagation in the axial and radial directions increase, but the final velocity tends to be the same. The smaller the pressure in the chamber, the smaller the pressure difference in the chamber.

Key words:loading density; porous medium model; ignite and propagation; porosityCLC number:TJ55; O359Document code:A

DOI: 10.11943/CJEM2021172 (责编: 王艳秀)