文章编号:1006-9941(2021)08-0713-08

4-羟基-3,5-二硝基吡唑含能离子化合物的合成、晶体结构及性能

伍 波1,蒋绣俄1,胡 平2,杜慧英1,刘芮楷2,高瞻宇2

关键词:含能化合物;4-羟基-3,5-二硝基吡唑;晶体结构;热分解;机械感度

(1. 西南科技大学环境友好能源材料国家重点实验室,四川 绵阳 621010;2. 西南科技大学材料科学与工程学院,四川 绵阳 621010)

摘 要: 以3,5-二硝基-4-溴吡唑(1)为底物,经水解与中和反应合成了4-羟基-3,5-二硝基吡唑(H-DNOP,2),并利用其酸性,设计、合成了DNOP的三种离子型含能化合物(3~5)。采用核磁、红外、X射线单晶衍射等手段对化合物3~5的结构进行表征;利用差示扫描量热仪-热重联用研究了化合物3~5的三种离子盐的热性能,其中肼盐(3)的热分解温度最高为210.3 ℃。采用BAM测试方法测试了撞击感度和摩擦感度,并基于等键方程和Kamlet-Jacobs方程预测了其能量参数。结果表明,三种含能化合物的实测感度较低,撞击感度均为36J,摩擦感度均为360N,比三硝基甲苯(TNT)(撞击感度为15J,摩擦感度为353N)和黑索今(RDX)(撞击感度为7.4J,摩擦感度为120N)钝感;三种化合物理论爆速为7758~8288 m·s⁻¹,爆压为26.06~29.96 GPa。

中图分类号: TI55; O64

文献标志码:A

DOI:10.11943/CJEM2021113

1 引言

含能材料是武器装备的能量源泉,深刻影响武器 系统的作战效能,因其重要的战略地位而受到世界各 国的高度重视。含能化合物是含能材料的核心,其性 能决定了含能材料的性能上限。传统含能化合物如黑 索今(RDX)和奥克托今(HMX)等随着能量的提高,其 机械感度也不断增加、安全性下降。近年来,设计与合 成具有良好能量水平和低感度的化合物是含能材料领 域的重要研究内容^[1-2]。芳香性富氮乃至全氮杂环因 其结构中包含大量 N—N和C—N键、具有高的正生 成焓和能量密度,而成为创制新型含能化合物极具潜 力的母环骨架。其结构含有大量供氢键作用位点,有 益于分子结构中形成氢键作用,能降低含能化合物的 感度、提升其热稳定性,这些独特的优势使其含能衍生 物成为含能材料领域内的研究热点^[3-5]。吡唑是一类 具有正生成焓的芳香性五元氮杂环,易于被功能性基

收稿日期:2021-04-24;修回日期:2021-05-26 网络出版日期:2021-06-10 基金项目:国家自然科学基金资助(21905236) 作者简介: 伍波(1988-),男,副教授,主要从事富氮含能材料及绿 团,如硝基、氨基、偶氮以及重氮基团等修饰,而形成应 用方向多的新型含能化合物^[6-9]。其中,二硝基吡唑类 衍生物在熔铸炸药、不敏感弹药等方面展现出较大应 用潜力^[10-11]。为进一步提升二硝基吡唑含能化合物 的爆轰性能,可通过增加含能化合物中氧含量来提升 密度以及氧平衡。除了引入硝基、N一O等常见致爆 基团外,C一O结构既可以增加化合物的氧含量,又可 强化共轭作用和氢键作用,提升含能化合物的稳定性、 降低感度^[12-15]。典型的含C一O官能团富氮含能化合 物包括:四唑酮离子化合物^[12]、3-硝基-1,2,4 三 唑-5-酮^[13]以及5-甲基-4-硝基-吡唑-3-酮及其含能离 子化合物^[14]等。这些含能离子化合物的机械感度比 传统单质炸药钝感,但是其氧平衡和能量性能仍需进 一步提高。

鉴于硝基吡唑骨架和C一O结构的独特优势,以 高氧含量的4-羟基-3,5-二硝基吡唑(H-DNOP)为基 本骨架单元,设计了其新型合成路线,并得到了三种新 型 DNOP含能离子化合物。所合成含能离子化合物 通过 X-射线单晶衍射分析、傅里叶变换红外光谱 (FT-IR)、核磁共振谱(¹H NMR、¹³C NMR)、元素分析、 差示扫描量热仪-热失重(DSC-TG)联用等手段进行了 结构表征和理化性质测试,并利用 Kamlet-Jacobs 方程 预测了其爆轰性能。

引用本文: 伍波,蒋绣俄,胡平,等. 4-羟基-3,5-二硝基吡唑含能离子化合物的合成、晶体结构及性能[J]. 含能材料,2021,29(8):713-720. WU Bo, JIANG Xiu-e, HU Ping, et al. Synthesis, Crystal Structure and Properties of Ionic Energetic Compounds Based on 4-Hydroxyl-3,5-dinitropyrazolate Anion [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2021,29(8):713-720.

CHINESE JOURNAL OF ENERGETIC MATERIALS

色合成工艺研究。e-mail:wubo@swust.edu.cn

2 实验部分

2.1 试剂与仪器

试剂:3,5-二硝基-4-溴吡唑,实验室自制(纯度为 99%);草酰肼和4-氨基-1,2,4-三唑为分析纯;萨恩化 学技术(上海)有限公司;水合肼、发烟硝酸、浓硫酸、氢 氧化钾、乙酸乙酯以及甲醇均为分析纯,成都科龙化工 试剂公司。

仪器:DZF-20型真空干燥箱,北京中兴伟业仪器 有限公司;Tensor 27型红外光谱仪,德国Bruker公司; AVANCE 600型超导核磁共振波谱仪,德国 Bruker公司;Netzsch STA449F5型DSC-TG同步热分析仪,德国耐驰仪器公司;BFH PEx型轻落锤撞击感度测试仪和FSKM 10L型轻摩擦感度测试仪,美国爱迪赛恩公司;Accupyc Ⅱ-1340型真密度仪,美国 Micromeritics公司。

2.2 合成路线

以自制 4-溴-3,5-二硝基吡唑(1)为原料^[16-17],经 取代、中和反应得到 4-羟基-3,5-二硝基吡唑(2),再与 碱性化合物反应得到 4-羟基-3,5-二硝基吡唑含能离 子化合物 3~5,合成路线见 Scheme 1。

Scheme 1 Synthetic route of ionic energetic compounds 3-5 based on 3,5-dinitro-4-oxylpyrazolate anion

2.3 合成过程

2.3.1 4-羟基-3,5-二硝基吡唑(2)的合成

室温下,将3,5-二硝基-4-溴吡唑(2.37g,10.00 mmol) 溶解于 60 mL 水中,随后加入氢氧化钠。随后升温至 90 ℃反应 8 h,反应结束后降温至室温,用稀盐酸将反 应液的 pH 调至 2。经乙酸乙酯萃取 3 次后,有机相经 洗涤、干燥、浓缩得到黄色晶体 1.60 g,收率为 92%。 IR(ATR, ν /cm⁻¹):3582,3497,1623,1497,1448,1330, 1217,833,675;¹H NMR(600 MHz,DMSO- d_6 ,25 ℃) δ :6.15(br);¹³C NMR(150 MHz,DMSO- d_6 ,25 ℃) δ : 139.75,135.24。

2.3.2 4-羟基-3,5-二硝基吡唑肼盐一水合物(3)的 合成

称取 4-羟基-3,5-二硝基吡唑(0.348 g,2 mmol)

溶于 20 mL 水中,搅拌下升温至 80 ℃全部溶解,随后 滴加定量水合肼。加料完毕后,继续搅拌反应 0.5 h, 随后降温、结晶、抽滤、洗涤、干燥得到 0.28 g橙红色晶 体,产率为 68%。DSC(5 ℃・min⁻¹):210.3 ℃(dec.); IR(ATR, ν /cm⁻¹):3450,3402,3335,3310,3271,3044, 2987,1664,1560,1471,1383,1355,1315,1247, 1208,1138,904,870,835; ¹H NMR (600 MHz, DMSO- d_6 ,25 ℃) δ :6.64 (br); ¹³C NMR(150 MHz, DMSO- d_6 ,25 ℃) δ :6.64 (br); ¹³C NMR(150 MHz, DMSO- d_6 ,25 ℃) δ :143.39,142.58; Anal. calcd for C₃H₆N₆O₅:C 17.48,H 2.93,N 40.77; found:C 17.52, H 2.90,N 41.12。

2.3.3 4-羟基-3,5-二硝基吡唑草酰肼盐二水合物(4) 的合成

合成方法与化合物3相似,产物为黄色晶体,产率

含能材料

为 93%。 DSC(5 ℃ · min⁼¹):203.7 ℃(dec.);IR(ATR, ν /cm⁼¹):3592,1718,1653,1503,1396,1276,1215, 977,828,734,505;¹H NMR(600 MHz, DMSO-*d*₆, 25 ℃)δ:7.25 (br);¹³C NMR(150 MHz, DMSO-*d*₆, 25 ℃)δ: 157.95, 141.30, 139.13, 139.04; Anal. calcd for C₈H₁₀N₁₂O₁₂: C 20.61; H 2.16; N 36.05; found: C 20.69, H 2.21, N 36.11。

2.3.4 4-羟基-3,5-二硝基吡唑4-氨基-1,2,4-三唑盐 一水合物(5)的合成

合成方法与化合物**3**相似,产物为黄色晶体,产率 为82%。DSC(5 ℃・min⁻¹):191.5 ℃(dec.);IR(ATR, ν /cm⁻¹):3310,3130,1599,1477,1393,1275,1108, 1058,972,870,829,731,893,617;¹H NMR(600 MHz, DMSO- d_6 ,25 ℃) δ : 8.81(s,2H),6.71(s);¹³C NMR (150 MHz, DMSO- d_6 , 25 ℃) δ : 144.52, 140.68, 137.68; Anal. calcd for C₅H₆N₈O₅: C 23.26; H 2.34; N 43.41; found: C 23.30, H 2.28, N 43.57。

2.4 单晶培养及结构测定

将合成出的离子型化合物 3~5分别溶解在水溶液 中,趁热过滤,滤液于 25 ℃静置 12 h,溶剂降温后可 得到透明的晶体。

对于化合物 **3**,选取了尺寸 0.25 mm×0.23 mm× 0.14 mm 单晶进行 X 射线衍射实验;用 μ (Mo K_a)射线 (λ =0.71073 nm),石墨单色器,在173 K时,以 ω 方式扫 描,扫描范围: 3.266° < θ <26.376°, -7 <h <7, -9 <k <9, -11 <l <11,共收集衍射点 5486 个,其中独立衍射点 1718 个(R_{int} =0.0250),选取 I>2 σ (I)的 1415 个点用于 结构的测定和修正。晶体结构由程序 SHELXS97 和 SHELXL97 直接法解出,经多轮 Fourier 合成获得全部 非氢原子。全部非氢原子的坐标及各向异性热参数经 全矩阵最小二乘法修正及收敛。

对于化合物 4,选取了尺寸 0.23 mm×0.19 mm× 0.1 mm 单晶进行 X 射线衍射实验;用 μ (Mo K_a)射线 (λ =0.71073 nm),石墨单色器,在173 K时,以 ω 方式扫 描,扫描范围:2.692° < θ <25.366°,-9<h<9,-10<k<10, -18<l<18,共收集衍射点 6878 个,其中独立衍射点 3281 个(R_{int} =0.0392),选取 I>2 σ (I)的 2407 个点用于 结构的测定和修正。晶体结构由程序 SHELXS97 和 SHELXL97 直接法解出,经多轮 Fourier 合成获得全部 非氢原子。全部非氢原子的坐标及各向异性热参数经 全矩阵最小二乘法修正及收敛。

对于化合物 5,选取了尺寸 0.25 mm×0.15 mm× 0.10 mm 单晶进行 X 射线衍射实验;用μ(Mo K_α)射线

(λ =0.071073 nm),石墨单色器,在173 K时,以 ω 方式扫 描,扫描范围:3.455° < θ <25.412°,-14<h<14,-6<k<5, -21<l<21,共收集衍射点5382个,其中独立衍射点 1885个(R_{int} =0.0494),选取I>2 σ (I)的1427个点用于 结构的测定和修正。晶体结构由程序 SHELXS97和 SHELXL97直接法解出,经多轮 Fourier合成获得全部 非氢原子。全部非氢原子的坐标及各向异性热参数经 全矩阵最小二乘法修正及收敛。

2.5 性能测试

在氮气流量为50 mL·min⁻¹、升温速率为5 ℃·min⁻¹ 以及温度区间为50~450 ℃的条件下利用 DSC-TG 实 测离子型化合物 **3-5** 的热稳定性。

按照 BAM 测试规定,在相应测试条件:药量 (30±1)mg,落锤质量2kg,环境温度10~35℃,相对 湿度 *q*≤80%RH,研究了其撞击感度和摩擦感度。

3 结果与讨论

3.1 晶体结构分析

所得三个晶体的 CCDC 号分别为:2079325(3), 2079326(4),2079327(5)。表1为化合物 3~5 的部 分晶体学数据,表2为该三个化合物的主要键长数据。

图 1a 和图 1b 分别为 4-羟基-3,5-二硝基吡唑肼盐 (3)的分子结构和晶体堆积图。如图1a所示,离子型 化合物由一价水合肼阳离子与一价 4-羟基-3,5-二硝 基吡唑阴离子配对组成。从表2可以看出,吡唑环上 C(1)—N(2)和C(3)—N(1)的键长分别为1.375(3)Å 和 1.365(3) Å, 呈现较好的芳香性。硝基与吡唑的 C(1)—N(3)和C(3)—N(4)键长分别为1.389(3)Å 和 1.411(3) Å, 介于正常 C—N 双键(键长为 1.27 Å) 和C-N单键(键长为1.47Å)之间,表明硝基与吡唑环 能形成共轭体系。C(2)—O(3)的键长为1.262(2)Å, 其与吡唑环的二面角(N(2)-C(1)-C(2)-O(3)和 O(3)-C(2)-C(3)-N(1)分别为179.7(2)°和 -179.8(2)°,表明氧原子也可与吡唑环形成平面性的 共轭体系,使整个含能阴离子在晶体堆积中易于形成 平面堆积结构。如其晶体堆积图(图1b)所示,该离子 型化合物的分子排列整齐,呈层状结构堆积,肼离子与 阴离子中的硝基与氧代基团存在大量的 N-H···O, N 氢键作用(表 2),呈现出三维网状结构(图 1b 和 图 1 c))。

4-羟基-3,5-二硝基吡唑草酰肼盐(4)的分子结构 和分子在晶胞中的堆积分别示于图 2a 和图 2b。该离 子型化合物由二价草酰肼阳离子与一价4-羟基-3, 5-二硝基吡唑阴离子配对组成。其中阴离子的结构与 肼盐(3)相似,也呈现出良好的平面性。草酰肼阳离 子的结构中C(4B)-O(6B)键长为1.215(3)Å,介于

表1 化合物 3~5 的部分晶体学数据

Table 1Partial crystallographic data of compounds 3–5

C—O单键和C=O双键之间;C(4B)—N(5B)的键长为 1.340(3)Å,介于C—N单键和C=N双键之间(表1)。 其二面角O(6B)—C(4B)—N(5B)—N(6B)和 C(4B(b))—C(4B)—N(5B)—N(6B)分别为-1.4(4)°

Crystals	3 ⋅H ₂ O	4 •2H₂O	5.H ₂ O
Formula	$C_3H_8N_6O_6$	C ₈ H ₁₄ N ₁₂ O ₁₄	C ₅ H ₈ N ₈ O ₆
Formula weight	224.15	502.31	276.19
Temperature	173(2) K	173(2) K	173(2) K
Crystal system	triclinic	triclinic	monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	P21/n
ho / g·cm ⁻³	1.752	1.829	1.745
<i>a</i> / Å	6.3914(3)	8.0581(5)	12.2261(8)
<i>b</i> / Å	7.7981(3)	8.4765(4)	5.0440(4)
<i>c</i> / Å	9.2513(5)	15.3898(9)	17.9808(10)
α / (°)	109.184(2)	104.755(2)	90
eta / (°)	92.620(2)	93.036(2)	108.509(3)
γ / (°)	100.761(2)	114.246(2)	90
Goodness-of-fit on F ²	1.041	1.047	1.050
Final R indexes $[I > 2\sigma(I)]$	$R_1 = 0.0414$, $wR_2 = 0.0934$	$R_1 = 0.0392$, $wR_2 = 0.0786$	$R_1 = 0.0421$, $wR_2 = 0.0893$
Final R indexes (all data)	$R_1 = 0.0540, wR_2 = 0.1039$	$R_1 = 0.0647$, $wR_2 = 0.0875$	$R_1 = 0.0642, wR_2 = 0.0986$
CCDC	2079325	2079326	2079327

表2 化合物 3~5 的部分键长

Table 2	Selected	bond	lengths	of	compound 3–5	

Compound 3		Compound 4		Compound 5	
bond	bond length/Å	bond	bond length/Å	bond	bond length/Å
C(1)—N(2)	1.375(3)	C(1A)—N(2A)	1.362(3)	C(1)—N(2)	1.376(3)
C(1) - N(3)	1.389(3)	C(1A)—N(3A)	1.401(3)	C(1) - N(3)	1.401(3)
C(1)-C(2)	1.422(3)	C(1A)—C(2A)	1.406(3)	C(1)-C(2)	1.411(3)
C(2)—O(3)	1.262(2)	C(2A)—O(3A)	1.283(3)	C(2)—O(3)	1.268(3)
C(2)—C(3)	1.434(3)	C(2A)—C(3A)	1.430(3)	C(2)—C(3)	1.426(3)
C(3)—N(1)	1.365(3)	C(3A)—N(1A)	1.348(3)	C(3)—N(1)	1.368(3)
C(3) - N(4)	1.411(3)	C(3A)—N(4A)	1.411(3)	C(3) - N(4)	1.414(3)
N(1)—N(2)	1.310(2)	C(4A)—O(6A)	1.219(3)	C(4)—N(6)	1.311(3)
N(2) - H(2)	0.904(16)	C(4A)—N(5A)	1.342(3)	C(4)—N(7)	1.337(3)
N(3)—O(2)	1.241(2)	C(4A)—C(4A)	1.528(4)2	C(4) - H(4)	0.9500
N(3)—O(1)	1.245(2)	N(1A)—N(2A)	1.318(3)	C(5) - N(5)	1.305(3)
N(4) - O(5)	1.234(2)	N(2A)—H(2A)	0.865(18)	C(5)—N(7)	1.361(3)
N(4)—O(4)	1.239(2)	N(3A)—O(2A)	1.230(2)	N(1)—N(2)	1.314(3)
N(5)—N(6)	1.445(3)	N(3A)—O(1A)	1.257(2)	N(3)—O(1)	1.238(2)
		N(4A)— $O(4A)$	1.233(2)	N(3)—O(2)	1.245(2)
		N(4A) —O(5A)	1.240(2)	N(4) - O(4)	1.232(3)
		N(5A)— N(6A)	1.421(3)	N(4)—O(5)	1.240(3)
				N(5)—N(6)	1.372(3)
				N(7)—N(8)	1.418(3)

和-179.8(2)°,表明草酰肼阳离子存在共轭效应,呈现出良好的平面性。草酰肼盐(4)的晶体堆积图(图2b)显示,二硝基吡唑阴离子呈层状堆积,其结构中的硝基和氧代基团与吡唑环上—NH和草酰肼上—NH₃*结构以典型的N—H…O氢键作用形成了三维网络结构。

图1 化合物**3**的晶体分子结构图(a), 晶胞堆积图(b)及肼阳 离子氢键作用示意图(c)

Fig.1 Crystal molecular structure(a), packing diagram(b) and hydrogen bonding interactions surrounding with hydrazinium cation (c) of compound **3**

图 2 化合物 4 的晶体分子结构图(a)和晶胞堆积图(b) Fig.2 Crystal molecular structure(a) and packing diagram (b) of compound 4

4-羟基-3,5-二硝基吡唑4-氨基-1,2,4-三唑盐 (5)的分子结构和分子在晶胞中的堆积分别示于图3a 和图3b。该离子型化合物由质子化的4-氨基-1,2, 4-三唑阳离子与4-羟基-3,5-二硝基吡唑阴离子配对组 成。其阴离子中的C(2)—O(3)键长为1.268(3)Å,空 间结构与肼盐(3)和草酰肼盐(4)相似,也呈现出良好

表3 化合物3中的氢键作用

Table 3Hydrogen bonds of hydrazinium 3,5-dinitro-4-oxyl-pyrazolate 3

	<i>d</i> (D-H)	<i>d</i> (H····A)	<i>d</i> (D····A)	<(DHA)
D—п…A	/Å	/Å	/Å	/(°)
N(2)- $H(2)$ ···· $O(6)$	0.90(3)	1.72(3)	2.621(2)	173(2)
$N(5) - H(5A) \cdots N(1)$	0.91(3)	2.01(3)	2.905(2)	165(2)
$N(5) - H(5B) \cdots O(3)$	0.91(3)	1.87(3)	2.759(2)	167(2)
$N(5) - H(5B) \cdots O(4)$	0.91(3)	2.43(3)	2.812(2)	105.2(19)'
$N(5) - H(5C) \cdots O(4)$	0.90(2)	2.43(3)	3.170(2)	138.7(18)
$N(5) - H(5C) \cdots O(5)$	0.90(2)	2.45(2)	3.171(2)	137(2)'
$O(6) - H(6A) \cdots O(2)$	0.81(3)	2.53(3)	2.913(2)	111(2)
$O(6) - H(6A) \cdots O(3)$	0.81(3)	2.05(3)	2.841(2)	168(2)'
$O(6) - H(6B) \cdots N(6)$	0.82(2)	2.10(2)	2.914(3)	172(3)
N(6)- $H(6C)$ ···· $O(2)$	0.88(3)	2.52(3)	3.081(2)	123(2)
$N(6) - H(6C) \cdots O(5)$	0.88(3)	2.52(3)	3.201(3)	135(2)'
N(6)- $H(6D)$ ···O(1)	0.87(3)	2.37(3)	3.133(2)	146(2)
N(6)- $H(6D)$ ···· $O(4)$	0.87(3)	2.45(3)	3.023(3)	124(2)'

Note: i: 1/2-x, -1/2+y, 1/2-z; ii: 1/2-x, 1/2+y, 1/2-z; iii: 1/2+x, 5/2-y, 1/ 2+z; iv: 3/2-x, -1/2+y, 1/2-z.

图 3 化合物 5 的晶体分子结构图(a)和晶胞堆积图(b) Fig.3 Crystal molecular structure(a) and packing diagram(b) of compound 5

含能材料

的平面性。其4-氨基-1,2,4-三唑阳离子结构中 N(7)—N(8)的键长为1.418(3)Å,且二面角N(6)— C(4)—N(7)—N(8)和N(5)—C(5)—N(7)—N(8)分别 为179.5(2)°和-179.6(2)°,表明阳离子中氨基与三 唑环呈现良好共平面性,整个阳离子也为平面型结 构。该含能离子中存在大量的N—H…O和O—H…N 典型的氢键作用,阳离子三唑环与阴离子中的硝基通过 典型氢键N(6)—H(6A)…O(3)和N(6)—H(6A)…O (4)以及非典型的氢键作用C(4)—H(4)…O(5),C(4) — H(4)…O(4),C(5)—H(5)…O(2),C(4)—H(4c)…O (1)和C(5)—H(5)…O(2)氢键作用构建晶体结构中 的复杂的三维网状结构(图3b)。

3.2 性能表征

3.2.1 热分解性能

在氮气氛下(流量为50 mL·min⁻¹),温度范围50~ 300 ℃,升温速率5 ℃·min⁻¹,试样量约为0.3~0.5 mg,

试样皿为氧化铝坩埚的条件下对合成的含能化合物 3~5的热性能进行研究,其DSC-TG结果如图4所示。 如图 4a 显示, 肼盐(3) 在热分解过程中在 86.4 ℃会脱 去结晶水,然后在没有经历吸热熔化的相变过程,而是 固相直接分解,且只有一个放热分解峰210.3℃。此 放热峰峰型尖锐,温度跨度小,表明样品分解速度快, 放热量大,失重率达到77.65%。草酰肼盐(4)则在 94.7 ℃脱去结晶水,然后在没有经历吸热熔化的相变 过程,而是固相直接快速分解,且只有一个放热分解峰 203.7 ℃,失重率达到82.65%。4-氨基-1,2,4-三唑盐 (5) 在受热过程中在100.1 ℃会脱去结晶水,在 140.5 ℃熔化,经历相变过程。随后在191.5 ℃直接 快速分解,只有一个放热分解峰191.5℃,失重率为 57.5%。对比三种化合物,可以看出,肼盐(3)的热稳 定性最好,主要是因为其晶体结构中呈现较好平面堆 积,与三维氢键网络协同为稳定性提供助益。

Fig.4 DSC-TG curves of compounds 3-5

3.2.2 机械感度测定

化合物 3~5 的撞击感度和摩擦感度是依据 BAM 标准测试法测定:药量(30±1)mg,落锤质量 2 kg, 3~5 的撞击感度和摩擦感度分别为 36 J, 360 N(3); 36 J, 360 N(4); 36 J, 360 N(5)。其感度均优于 RDX (撞击感度为 7.4 J;摩擦感度为 120 N)和 TNT(撞击感 度为 15 J;摩擦感度为 353 N)^[18]。

3.2.3 爆轰性能模拟

利用 Gaussian09 程序^[19]和等键方程(Scheme 2), 并基于 Born-Haber 能量循环机理^[20],计算了离子型含 能化合物 **3~5**的生成焓,分别为 9.23(**3**),-392.36(**4**), 213.95(**5**) kJ·mol⁻¹。进一步依据理论模拟所得的生成 焓和化合物的实测密度,利用 Kamlet-Jacobs方程预测了 其爆轰性能,结果见表 4。由表 4 可见,化合物 **3~5**的爆 速为 7797~8285 m·s⁻¹,爆压为 26.46~29.95 GPa,远高 于TNT(爆速为6881 m·s⁻¹,爆压为19.5 GPa)。

Scheme 2 Isodemic reaction for computing the HOF

4 结论

(1)以3,5-二硝基-4-溴吡唑为原料,经碱水解、中和、成盐三步反应合成了三个新型含能离子化合物,即 肼盐(3)、草酰肼盐(4)和4-氨基-1,2,4-三唑盐(5)。 并利用降温法培养了单晶,3属于三斜晶系,空间群为 P-1,晶体密度为1.752g·cm⁻³;4属于三斜晶系,空间 群为P-1,晶体密度为1.829g·cm⁻³;5属于单斜晶系, 空间群为P2,/n,晶体密度为1.745g·cm⁻³。 Table 4. Distribution in a large matter and determined in a summation of a summary data 2.5

表 4	化合物	3~5的理	化学性	质和爆轰	診数
-----	-----	-------	-----	------	----

Thysochemical properties and deconation parameters of compounds 5 5								
compound	$T_{\rm d}^{(1)}$ / °C	density ²⁾ / $g \cdot cm^{-3}$	$\Delta_{\rm f} H_{\rm m}{}^{3)}/{\rm kJ} \cdot {\rm mol}^{-1}$	IS ⁴⁾ / J	FS ⁵⁾ / N	$D^{6)}/ \text{ m} \cdot \text{s}^{-1}$	<i>P</i> ⁷⁾ / GPa	
3	210.3	1.75	12.56	36	360	8288	29.96	
4	203.7	1.81	-389.03	36	360	7988	28.40	
5	191.5	1.73	217.28	36	360	7758	26.06	
TNT ^[18]	290	1.65	-31.7	15	353	6881	19.5	
RDX ^{[[18]}	210	1.82	86.3	7.4	120	8750	34.0	

Note: 1) thermal decomposition temperature(DSC, 5 °C·min⁻¹, peak); 2) density measured by gas pycnometer; 3) enthalpy of formation (calculated value); 4) impact sensitivity; 5) friction sensitivity; 6) calculated detonation velocity via Kamlet-Jacobs equation; 7) calculated detonation pressure via Kamlet-Jacobs equation.

(2)采用 DSC-TG 联用研究了其热稳定性,放热分 解温度为 191.5~210.3 ℃,其中肼盐的热分解温度为 210.3 ℃,展现较好的热稳定性。

(3)按照BAM测试条件,实测其撞击感度为36J, 摩擦感度为360N,机械感度均比TNT和RDX钝感。

(4)基于计算生成焓和实测密度,利用Kamlet-Jacobs 方程预测了它们的爆轰性能,理论爆速为7758~ 8288 m·s⁻¹、爆压为26.06~29.96 GPa,远高于TNT。

参考文献:

[1] 田均均,张庆华,李金山.含能分子合成最新进展[J].含能材料,2016,24(1):1-9.

TIAN Jun-jun, ZHANG Qin-hua, LI Jin-shan. Progress in synthesis of energetic molecules [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2016, 24(1): 1–9.

- [2] 田勇, 韩勇, 杨光成. 钝感高能炸药几点认识与思考[J]. 含能材料, 2016, 24(12): 1132-1135.
 TIAN Yong, HAN Yong, YANG Guang-cheng. Some understanding and thinking of insensitive high explosive[J]. *Chinese Journal of Energetic Materials*(Hanneng Cailiao), 2016, 24 (12): 1132-1135.
- [3] Gao H, Shreeve J M. Azole-based energetic salts[J]. *Chemical Reviews*, 2011, 111(11): 7377–7436.
- [4] Yin P, Zhang Q, Shreeve J M. Dancing with energetic nitrogen atoms: versatile *N*-functionalization strategies for *N*-heterocyclic Frameworks in High Energy Density Materials[J]. Accounts of Chemical Research, 2016, 49(1): 4–16.
- [5] Wang P, Xu Y, Lin Q, et al. Recent advances in the syntheses and properties of polynitrogen pentazolate anion cyclo-N₅ – and its derivatives [J]. *Chemical Society Reviews*, 2018, 47: 7522–7538.
- [6] Herv G, Roussel C, Graindorge H. Selective preparation of 3, 4, 5-trinitro-1H-pyrazole: a stable all carbon-nitrated arene
 [J]. Angewandte Chemie International Edition, 2010, 49: 3177-3181.
- [7] Zhang Y, Huang Y, Parrish D A, et al. 4-Amino-3, 5-dinitropyrazolate salts—highly insensitive energetic materials[J]. *Journal of Materials Chemistry*, 2011, 21: 6891–6897.
- [8] Yin P, Mitchell L A, Parrish D A, et al. Energetic N-nitramino/ N-oxyl-functionalized pyrazoles with versatile π-π stacking: structure-property relationships of high-performance energetic materials [J]. Angewandte Chemie International Edition,

2016, 128: 14621-14623.

- [9] Zhang M, Gao H, Li C, et al. Towards improved explosives with a high performance: N-(3, 5-dinitro-1H-pyrazol-4-yl)-1Htetrazol-5-amine and its salts[J]. Journal of Materials Chemistry A, 2017, 5: 1769–1777.
- [10] Fu W, Zhao B, Zhang M, et al. 3, 4-Dinitro-1-(1H-tetrazol-5-yl)-1H-pyrazol-5-amine (HANTP) and its salts: primary and secondary explosives [J]. *Journal of Materials Chemistry A*, 2017,5: 5044–5054.
- [11] Tang Y, Kumar D, Shreeve J M, Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1, 2,3,4-tetrazine[J]. *Journal of the American Chemical Society*, 2017, 139(39): 13684–13687.
- [12] Fischer D, Klapötke T M, Stierstorfer J. Salts of tetrazolone-synthesis and properties of insensitive energetic materials
 [J].Propellants, Explosives, Pyrotechnics, 2012, 37: 156–166.
- [13] Szala M, Trzcinski W A, Synthesis and energetic properties of imidazolium and 2-methylimidazolium salts of 3-nitro-1, 2, 4-triazol-5-one [J]. *Propellants, Explosives, Pyrotechnics*, 2017, 42: 1027–1031.
- [14] 邓沐聪,王毅,张文全,等,5-甲基-4-硝基-1H-吡唑-3-(2H)-酮及 其含能离子化合物的合成与性能[J].含能材料,2017,25(8): 645-650.
 DENG Mu-cong,WANG Yi,ZHANG Wen-quan, et al. Synthesis and properties of 5-methyl-4-nitro-1H-pyrazol-3-(2H)-one and its energetic ion compounds[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2017, 25(8): 645-650.
- [15] Wu B, Du H, Hu P, et al. Novel high-energy ionic molecules deriving from new monovalent and divalent 4-oxyl-3,5-dinitropyrazolate moieties [J]. *Journal of Energetic Materials*, 2021, 39: 10-22.
- [16] Tomanová M, Jedinák L, Košař J, et al. Synthesis of 4-substituted pyrazole-3, 5-diamines via Suzuki-Miyaura coupling and iron-catalyzed reduction[J]. Organic & Biomolecular Chemistry, 2017, 15: 10200-10211.
- [17] Wu B, Yang L, Zhai D, et al. Facile synthesis of 4-amino-3, 5-dinitropyrazolated energetic derivatives via 4-bromopyrazole and their performances [J]. *Fire Phys Chem*, 2021, 1: 76-82.
- [18] Akhavan J. The chemistry of explosive [M]. UK: The Royal Society of Chemistry, 1998.
- [19] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Gaussian, Inc[CP]. Wallingford, CT: 2009.
- [20] Gao H X, Ye C F, Piekarski C M, Shreeve J M. Computational Characterization of Energetic Salts [J]. The Journal of Physical Chemistry C, 2007, 111: 10718–10731.

CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

Synthesis, Crystal Structure and Properties of Ionic Energetic Compounds Based on 4-Hydroxyl-3,5dinitropyrazolate Anion

WU Bo¹, JIANG Xiu-e¹, HU Ping², DU Hui-ying¹, LIU Rui-kai², GAO Zhan-yu²

(1. State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China; 2. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract: 4-Hydroxy-3,5-dinitropyrazole(*H*-DNOP, **2**) was synthesized from 3,5-dinitro4-bromopyrazole(**1**) by hydrolysis and neutralization reaction. Three kinds of ionic energetic compounds (**3**–**5**) of DNOP were designed and synthesized by using its acidity. The structures of compounds **3**–**5** were characterized by FT-IR, NMR spectrum, elemental analysis as well as single-crystal X-ray diffraction, and their thermal stabilities were investigated by differential scanning calorimetry and thermogravimetry (DSC-TG). The maximum decomposition temperature of hydrazine salt (**3**) was T_d =210.3 °C. The impact sensitivity and friction sensitivity were measured by BAM method, while the detonation parameters were predicted based on the isodesmic reactions and the Kamlet-Jacobs equation. The results show that the measured impact sensitivity and friction sensitivity of the threecompounds **3–5** are all 36 J and 360 N, which are less sensitive than those of TNT(IS=15 J,FS=353 N) and RDX(IS=7.4 J,FS=120 N). The theoretical detonation velocities of the three compounds are 7758–8288 m·s⁻¹, and the detonation pressures are 26.06–29.96 GPa, respectively.

Key words:energetic compound;4-hydroxyl-3,5-dinitropyrazolate;crystal structure;thermal decomposition;mechanical sensitivityCLC number:TJ55;O64Document code:ADOI:10.11943/CJEM2021113

(责编:高毅)