文章编号:1006-9941(2020)09-0826-08

# FOX-7在DMSO-EAC混合体系中的结晶热力学

赵鑫华,陈丽珍,王建龙,韩子豪

(中北大学化学工程与技术学院,山西 太原 030051)

摘 要: 为了研究1,1-二氨基-2,2-二硝基乙烯(FOX-7)在二甲基亚砜-乙酸乙酯(DMSO-EAC)混合溶剂中的结晶行为,促进 FOX-7球形化晶体制备工艺研究,利用激光动态法测定了298.15~333.15 K温度范围内FOX-7在不同体积比DMSO-EAC混合溶剂 中的溶解度,建立了溶解度方程,估算了结晶热力学参数,并在DMSO-EAC混合溶剂中进行了降温结晶实验。结果表明,FOX-7在 该混合体系溶剂中的溶解度随温度和DMSO含量的增加而增加;所有模型拟合结果良好,其中CNIBS/R-K模型的关联结果最优;在 V<sub>DMSO</sub>: V<sub>EAC</sub>=1:3 体系中降温结晶所得晶体形貌规则、呈椭球状且粒度均匀。

DOI:10.11943/CJEM2020092

## 1 引言

1,1-二氨基-2,2-二硝基乙烯(FOX-7)是一种综合性能优异的新型高能钝感炸药。自1998年首次合成以来,引起了含能材料研究者的高度重视<sup>[1]</sup>。X射线单晶分析结果表明,FOX-7属推-拉型烯烃,分子内存在π电子共轭体系,分子内和分子间存在较强的氢键,而表现出无熔点、晶体密度高、稳定性好、感度低等特点<sup>[2]</sup>。FOX-7的密度为1.878g·cm<sup>-3</sup>,撞击感度15~40 N·m,爆速为9.0 km·s<sup>-1</sup>,爆压为36.0 GPa。能量水平约1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷(HMX)的85%,与环三亚甲基三硝胺(RDX)相当;但远比HMX和RDX钝感<sup>[3-4]</sup>,是钝感弹药的理想组分<sup>[5-6]</sup>。

含能化合物的晶体形貌不仅影响其工艺性能,而 且对其物化性能、感度、热安定性和爆炸性能等均有着 重要的影响<sup>[7]</sup>。然而通常合成得到的FOX-7颗粒细 小、堆积密度低、形貌不规则、晶体缺陷较多,不能直接

收稿日期: 2020-04-16;修回日期: 2020-05-15 网络出版日期: 2020-06-22

作者简介:赵鑫华(1994-),女,博士,主要从事含能材料结晶研究。e-mail:495514721@qq.com

**通信联系人:**陈丽珍(1964-),女,教授,博士生导师,主要从事含能材料结晶研究。e-mail:Chen17555@163.com

投入使用。为了进一步提高其性能,拓宽其应用,必须 在结晶过程控制其晶体形貌,提高晶体质量<sup>[8]</sup>。

国内外开展了FOX-7结晶工艺研究。Kim等<sup>[9]</sup>研究了FOX-7在纯溶剂二甲基亚砜(DMSO)、N,N-二甲基甲酰胺(DMF)和N-甲基吡咯烷酮(NMP)中的结晶行为,得到不规则片状晶体,团聚现象比较明显。付秋 菠<sup>[10]</sup>在DMF-H<sub>2</sub>O和NMP-H<sub>2</sub>O体系中获得的FOX-7晶体分别为延长的四面或六面棱柱形和斜方菱形,晶体不规则、表面粗糙、长径比大、团聚现象明显。周 群<sup>[11]</sup>研究了多种溶剂(DMSO-H<sub>2</sub>O、冰醋酸、环己酮、乙腈、DMF-H<sub>2</sub>O)中FOX-7的结晶形貌,得到的晶体形状不规则,堆积不密实,缺陷较多。周诚<sup>[12]</sup>在DMF-H<sub>2</sub>O、DMSO-H<sub>2</sub>O和NMP-H<sub>2</sub>O中得到了片层状堆积的FOX-7晶体。刘璐<sup>[13]</sup>在DMSO-H<sub>2</sub>O体系中采用降温结晶,得到了形貌规则的立方块状晶体,采用溶析结晶,得到的晶体有少量裂缝和部分聚晶。这些研究均未得到理想的FOX-7晶体。

FOX-7结晶热力学和动力学等研究是 FOX-7 晶体形貌控制技术的基础。文献[14-18]报道的 FOX-7 在 DMSO、NMP 等 9 种 纯 溶 剂 和 DMSO-H<sub>2</sub>O、 DMSO-EtOH、DMSO-ACE、DMF-H<sub>2</sub>O 等混合溶剂中的热力学基础数据为 FOX-7 的结晶方法和结晶条件的选择提供了直接的指导。

本课题组对FOX-7在不同二元混合体系中的结

**引用本文:**赵鑫华,陈丽珍,王建龙,等,FOX-7在DMSO-EAC 混合体系中的结晶热力学[J]. 含能材料,2020,28(9):826-833. ZHAO Xin-hua, CHEN Li-zhen, WANG Jian-long, et al. Crystallization Thermodynamics of FOX-7 in DMSO-EAC Solvent Mixtures[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2020,28(9):826-833.

Chinese Journal of Energetic Materials, Vol.28, No.9, 2020 (826-833)

晶进行研究时发现EAC是一种较好的非溶剂,因此提出以DMSO-EAC为结晶体系,研究FOX-7在其中的结晶行为。本研究采用激光动态法测定FOX-7在不同体积比的DMSO-EAC混合溶剂中的溶解度,用Apelb-lat、van't Hoff和CNIBS/R-K模型关联溶解度实验数据,计算FOX-7的热力学参数、固液表面张力和晶体表面熵因子,为FOX-7的结晶研究提供基础数据,进行降温结晶实验,获得了不同形貌的晶体。

## 2 实验部分

#### 2.1 试剂和仪器

FOX-7,甘肃银光化学工业集团有限公司,经 DMSO中重结晶纯化,纯度大于99.5%;DMSO和 EAC,均为分析纯,西陇化工股份有限公司。

分析天平,AL104型,梅特勒-托利多仪器有限公司;玻璃恒温水浴,SYP型,巩义市予华仪器有限责任公司;数显恒温磁力搅拌器,Jeio Tech Co.LTD;激光监测装置,JDW-3型,北京大学物理系;水浴锅,SYD-100型,杭州仪表电机有限公司;搅拌器,JJ-1型,北京市永光明仪器有限公司;抽滤机,SHZ-CA型,巩义市予华仪器有限责任公司;真空干燥箱,巩义市予华仪器有限责任公司;光学显微镜,XSP-10A型,上海光学仪器厂。

#### 2.2 溶解度的测定和计算

本研究采用激光动态法<sup>[19-20]</sup>测定溶解度,测定装置如图1所示,激光具有良好的方向性、单一的波长和



图1 溶解度测定装置示意图

1一激光发射器,2一结晶器,3一空气冷凝器;,4一酸式滴定管, 5一磁力转子,6一磁力搅拌器,7一信号接收器,8一显示仪, 9一超级恒温水浴

**Fig.1** Schematic diagram of the solubility measuring equipment 1—laser emitter, 2—crystallizer, 3—air condenser, 4—acid burette, 5—magnetic rotor, 6—magnetic stirrer, 7—signal receiver, 8—display instrument, 9—super constant temperature water bath

#### 827

极好的穿透能力,以穿过结晶器的激光强度的突变来 判定固液相平衡的终点。

测定步骤:按图1安装实验装置,打开激光器预 热;准确量取一定量的溶剂和称量适当过量的 FOX-7,加入结晶器;设置温度及搅拌速率,开启恒温 装置和搅拌装置;当结晶器内达到预置温度并稳定 20 min后,记录透射光强;用滴管逐次缓慢加入少量 溶剂,记录透射光强及加入的溶剂量;当透射光强示 数达到最大并且基本不再变化时,认为FOX-7已经 完全溶解,记录加入的溶剂总量;进行数据处理,计 算溶解度。

FOX-7 在二元混合溶剂中的溶解度(x)通过式 (1)计算;二元混合溶剂中 DMSO 的摩尔分数(x<sub>DMSO</sub>) 通过式(2)计算:

$$x = \frac{m_1/M_1}{m_1/M_1 + m_2/M_2 + m_3/M_3}$$
(1)

$$x_{\rm {\tiny DMSO}} = \frac{m_2/M_2}{m_2/M_2 + m_3/M_3} \tag{2}$$

式中, $m_1$ 、 $m_2$ 、 $m_3$ 分别为FOX-7、DMSO、EAC的质量, g; $M_1$ 、 $M_2$ 、 $M_3$ 分别为FOX-7、DMSO、EAC的相对分子 质量。

### 2.3 热力学参数的计算

FOX-7在DMSO-EAC混合溶剂中的溶解焓、溶解 熵和溶解过程吉布斯自由能变化通过 van't Hoff方程<sup>[21]</sup>计算:

$$n x = -\frac{\Delta_{dis}H}{RT} + \frac{\Delta_{dis}S}{R}$$
(3)

式中,x为FOX-7的溶解度,mol·mol<sup>-1</sup>;R为气体常数, 8.3145 J·mol<sup>-1</sup>·K<sup>-1</sup>; $\Delta_{dis}H$ 为溶解焓,J·mol<sup>-1</sup>; $\Delta_{dis}S$ 为溶 解熵,J·mol<sup>-1</sup>·K<sup>-1</sup>。

FOX-7的吉布斯自由能<sup>[22]</sup>用式(4)计算,温度 *T*<sub>mean</sub>取结晶过程平均温度315.65K。

$$\Delta_{\rm dis}G = \Delta_{\rm dis}H - T_{\rm mean}\Delta_{\rm dis}S \tag{4}$$

溶解过程焓变和熵变对吉布斯自由能的相对贡献 值% $\xi_{H}$ 和% $\xi_{s}^{[23-24]}$ 由式(5)和(6)计算:

$$\%\xi_{\rm H} = \frac{\left|\Delta_{\rm dis}H\right|}{\left|\Delta_{\rm dis}H\right| + \left|T_{\rm mean}\Delta_{\rm dis}S\right|} \times 100$$
<sup>(5)</sup>

$$\%\xi_{s} = \frac{\left|T_{\text{mean}}\Delta_{\text{dis}}S\right|}{\left|\Delta_{\text{dis}}H\right| + \left|T_{\text{mean}}\Delta_{\text{dis}}S\right|} \times 100$$
(6)

## 2.4 固液表面张力和晶体表面熵因子的计算

固液表面张力(γ)是代表晶体物理性质的主要物

含能材料

理量,表面张力的获得不仅使理论预测成核行为成为 可能,而且可以促进对成核理论的深入理解。此外,固 液表面张力很大程度上决定着晶体的生长机理。因此 研究固液表面张力非常必要。Meresmann<sup>[25]</sup>推导出 一个较为简单的表面张力理论计算式:

$$\gamma = 0.414 kT \left( \rho_c N_A / M \right)^{\frac{2}{3}} \ln \left( \frac{\rho_c}{C_{eq}} \right)$$
(7)

式中, $N_A$ 为Avogadro常数, $6.02 \times 10^{23} \text{ mol}^{-1}$ ;k为玻尔兹 曼常数, $1.3806 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$ ; $\rho_c$ 为晶体密度, $\text{kg} \cdot \text{m}^{-3}$ ; $C_{eq}$ 为晶体溶解度, $\text{kg} \cdot \text{m}^{-3}$ ;M为晶体摩尔质量, $\text{kg} \cdot \text{mol}^{-1}$ 。

晶体表面熵因子(f)可以通过溶解度数据及固液 表面张力计算。f可以表征晶体表面在原子水平上光 滑程度,f越大,晶体表面越光滑,晶体生长越困难。 Barata等<sup>[26]</sup>提出的由固液表面张力求晶体表面熵因 子,见式(8),(9):

$$f = \frac{4V^{\frac{2}{3}}\gamma}{kT} \tag{8}$$

$$V = \frac{M}{\rho N_A} \times 10^{-6} \tag{9}$$

式中,V为分子体积, $m^3$ ;M为摩尔质量,kg; $\rho$ 为密度, g·cm<sup>-3</sup>; $N_A$ 为Avogadro常数,6.02×10<sup>23</sup> mol<sup>-1</sup>。

#### 2.5 结晶实验

在不同体积比的 DMSO-EAC 混合溶剂中进行降 温结晶实验。结晶工艺条件为:起始温度 60 ℃,搅拌 速率 400 r·min<sup>-1</sup>,降温速率 0.3 ℃·min<sup>-1</sup>。在结晶器 中加入 30 mL 混合溶剂,根据所测溶解度数据加入相 应质量的 FOX-7;升温至设定的起始温度,搅拌使 FOX-7完全溶解形成饱和溶液;以设定的速率使体系 降温至析晶点并养晶;再以相同的降温速率降至室温; 将晶体滤出并用 EAC 洗涤,干燥;用光学显微镜观测 晶体形貌。

## 3 结果与讨论

#### 3.1 溶解度数据和模型

FOX-7在不同温度下不同体积比的 DMSO-EAC 混合溶剂中溶解度的实验值如表1 所示。

#### 3.1.1 Apelblat方程

Apelblat方程<sup>[27]</sup>由 Apelblat等从 Clausius—Clapeyron方程<sup>[28]</sup>推导出来,常用于拟合溶解度与温度间 关系:

$$\ln x = A_1 + \frac{B_1}{T} + C_1 \ln T$$
 (10)

Chinese Journal of Energetic Materials, Vol.28, No.9, 2020 (826-833)

式中,*x*为FOX-7的溶解度,mol·mol<sup>-1</sup>;*T*为绝对温度, K;*A*<sub>1</sub>、*B*<sub>1</sub>和*C*<sub>1</sub>是模型参数。

通过实验数据回归得到的 Apelblat 方程的模型参数值如表 2 所示。为了对比将方程计算得到的溶解度数据也列于表 1,溶解度对比曲线如图 2 所示。

## 3.1.2 Van't Hoff方程

Van't Hoff方程<sup>[29]</sup>是根据固-液平衡的热力学原 理来描述溶解度摩尔分数的对数与温度之间关系的溶 解度方程:

$$\ln x = A_2 + \frac{B_2}{T}$$
(11)

式中,x为FOX-7的溶解度, $mol \cdot mol^{-1}$ ;T为绝对温度, K; $A_2$ 和 $B_2$ 是模型参数。

通过实验数据回归得到的van't Hoff方程的模型 参数值如表3所示,溶解度对比曲线如图3所示。

### 3.1.3 CNIBS/R-K模型

CNIBS/R-K 模型<sup>[30]</sup>由 Acree 等<sup>[31]</sup>提出来,能较好 地对二元混合溶剂中溶剂组成变化时的溶解度数据进 行关联:

$$\ln x = B_0 + B_1 x_{\text{DMSO}} + B_2 x_{\text{DMSO}}^2 + B_3 x_{\text{DMSO}}^3 + B_4 x_{\text{DMSO}}^4$$
(12)

式中, x为 FOX-7 的溶解度, mol·mol<sup>-1</sup>;  $x_{DMSO}$ 为 DMSO 在混合溶剂中的摩尔分数, mol·mol<sup>-1</sup>; T为绝 对温度, K;  $B_0$ 、 $B_1$ 、 $B_2$ 、 $B_3$ 和  $B_4$ 是模型参数。

通过实验数据回归得到的CNIBS/R-K模型的模型 参数值如表4所示,溶解度对比曲线如图4所示。

#### 3.1.4 溶解度拟合结果

前述模型均用相对误差(RD)检验结果的一致性; 用均方差(RMSE)评估相关方程的拟合效果,见式 (13),(14):

$$RD = \frac{x_{\exp} - x_{cal}}{x_{\exp}}$$
(13)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (x_{exp} - x_{cal})^2}{N}}$$
(14)

式中, x<sub>exp</sub>为实验值; x<sub>cal</sub>为计算值; N代表实验点的 总数。

从图 2~图 4可看出,FOX-7在 DMSO-EAC 混合 溶剂中的溶解度随 DMSO 含量的增大而增大,说明 DMSO 是 FOX-7的良溶剂,EAC 为不良溶剂;溶解度 随温度的升高而增大,表明该溶解过程为吸热过程,升 高温度有助于溶解平衡。

从表 1~表 4 可看出,采用 Apelblat、van't Hoff 和 CNIBS/R-K 模型对溶解度进行拟合,得到溶解度计算

829

#### 表1 FOX-7在DMSO-EAC混合溶剂中溶解度的实验值和计算值

Table 1 Experimental and calculated values of solubility of FOX-7 in DMSO-EAC mixed solvents

| T/K                            | × ×100               | Apelblat equa        | Apelblat equation |                      | van't Hoff equation |                      | CNIBS/R-K model |  |
|--------------------------------|----------------------|----------------------|-------------------|----------------------|---------------------|----------------------|-----------------|--|
|                                | $X_{exp} \times 100$ | $x_{cal} \times 100$ | RD                | $x_{cal} \times 100$ | RD                  | $x_{cal} \times 100$ | RD              |  |
| $V_{(\text{DMSO})}$ : $V_{($   | <sub>EAC)</sub> =3:1 |                      |                   |                      |                     |                      |                 |  |
| 298.15                         | 15.0036              | 15.0128              | -0.0006           | 14.9291              | 0.0050              | 15.0036              | 0.0000          |  |
| 308.15                         | 15.7863              | 15.7875              | -0.0001           | 15.8213              | -0.0022             | 15.7863              | 0.0000          |  |
| 318.15                         | 16.6664              | 16.6464              | 0.0012            | 16.7057              | -0.0024             | 16.6664              | 0.0000          |  |
| 328.15                         | 17.6119              | 17.5912              | 0.0012            | 17.5811              | 0.0017              | 17.6119              | 0.0000          |  |
| 333.15                         | 18.0915              | 18.0966              | -0.0003           | 18.0152              | 0.0042              | 18.0915              | 0.0000          |  |
| $V_{(DMSO)}$ : $V_{(DMSO)}$    | <sub>EAC)</sub> =2:1 |                      |                   |                      |                     |                      |                 |  |
| 298.15                         | 14.1923              | 14.1931              | -0.0001           | 14.0378              | 0.0109              | 14.1923              | 0.0000          |  |
| 308.15                         | 14.7794              | 14.7669              | 0.0008            | 14.8301              | -0.0034             | 14.7794              | 0.0000          |  |
| 318.15                         | 15.4977              | 15.5035              | -0.0004           | 15.6132              | -0.0075             | 15.4978              | 0.0000          |  |
| 328.15                         | 16.4141              | 16.4052              | 0.0005            | 16.3862              | 0.0017              | 16.4141              | 0.0000          |  |
| 333.15                         | 16.9198              | 16.9198              | 0.0000            | 16.7687              | 0.0089              | 16.9199              | 0.0000          |  |
| $V_{(DMSO)}$ : $V_{(DMSO)}$    | <sub>EAC)</sub> =1:1 |                      |                   |                      |                     |                      |                 |  |
| 298.15                         | 10.3242              | 10.3274              | -0.0003           | 10.2420              | 0.0080              | 10.3241              | 0.0000          |  |
| 308.15                         | 10.9786              | 10.9828              | -0.0004           | 11.0157              | -0.0034             | 10.9785              | 0.0000          |  |
| 318.15                         | 11.7311              | 11.7330              | -0.0002           | 11.7938              | -0.0053             | 11.7310              | 0.0000          |  |
| 328.15                         | 12.6009              | 12.5831              | 0.0014            | 12.5743              | 0.0021              | 12.6009              | 0.0000          |  |
| 333.15                         | 13.0322              | 13.0475              | -0.0012           | 12.9651              | 0.0051              | 13.0321              | 0.0000          |  |
| $V_{(\text{DMSO})}$ : $V_{()}$ | <sub>EAC)</sub> =1:2 |                      |                   |                      |                     |                      |                 |  |
| 298.15                         | 6.5293               | 6.5311               | -0.0003           | 6.4718               | 0.0088              | 6.5294               | 0.0000          |  |
| 308.15                         | 7.0827               | 7.0740               | 0.0012            | 7.0954               | -0.0018             | 7.0828               | 0.0000          |  |
| 318.15                         | 7.6814               | 7.6920               | -0.0014           | 7.7344               | -0.0069             | 7.6816               | 0.0000          |  |
| 328.15                         | 8.3803               | 8.3915               | -0.0013           | 8.3866               | -0.0008             | 8.3804               | 0.0000          |  |
| 333.15                         | 8.7807               | 8.7740               | 0.0008            | 8.7172               | 0.0072              | 8.7808               | 0.0000          |  |
| $V_{(\text{DMSO})}$ : $V_{($   | <sub>EAC)</sub> =1:3 |                      |                   |                      |                     |                      |                 |  |
| 298.15                         | 4.4567               | 4.4563               | 0.0001            | 4.3827               | 0.0166              | 4.4567               | 0.0000          |  |
| 308.15                         | 4.8226               | 4.8179               | 0.0010            | 4.8437               | -0.0044             | 4.8226               | 0.0000          |  |
| 318.15                         | 5.2613               | 5.2673               | -0.0011           | 5.3197               | -0.0111             | 5.2612               | 0.0000          |  |
| 328.15                         | 5.8156               | 5.8143               | 0.0002            | 5.8091               | 0.0011              | 5.8156               | 0.0000          |  |
| 333.15                         | 6.1247               | 6.1283               | -0.0006           | 6.0585               | 0.0108              | 6.1247               | 0.0000          |  |

Note:  $x_{exp}$  is the experimental solubility data,  $x_{cal}$  is the correlated solubility data, *RD* is the relative deviation.

## 表2 Apelblat方程关联的模型参数

**Table 2** Model parameters, RMSE and  $R^2$ , correlated by the Apleblat equation

| $V_{\rm (DMSO)} \colon V_{\rm (EAC)}$ | $A_1$   | $B_1$   | $C_1$ | RMSE/% | $R^2$  |
|---------------------------------------|---------|---------|-------|--------|--------|
| 3:1                                   | -38.62  | 1265.36 | 5.70  | 0.02   | 0.9997 |
| 2:1                                   | -76.60  | 3060.73 | 11.30 | 0.01   | 0.9999 |
| 1:1                                   | -55.73  | 1933.35 | 8.24  | 0.01   | 0.9997 |
| 1:2                                   | -59.03  | 1919.19 | 8.75  | 0.01   | 0.9999 |
| 1:3                                   | -106.34 | 4051.60 | 15.73 | 0.01   | 0.9999 |

Note: A, B and C are the Apelblat equation model parameters, RMSE is the root-mean-square deviation,  $R^2$  is the correlation coefficient.



图 2 不同温度下 Apelblat 方程关联 FOX-7 溶解度的曲线 Fig.2 Solubility curves of FOX-7 at different temperature, correlated by the Apelblat equation

#### 表3 van't Hoff方程关联的模型参数

**Table 3** Model parameters, RMSE and  $R^2$ , correlated by the van't Hoff equation

| $V_{(\mathrm{DMSO})}$ : $V_{(\mathrm{EAC})}$ | $A_2$ | <i>B</i> <sub>2</sub> | RMSE/% | $R^2$  |
|----------------------------------------------|-------|-----------------------|--------|--------|
| 3:1                                          | -0.11 | -533.26               | 0.06   | 0.9969 |
| 2:1                                          | -0.27 | -504.48               | 0.10   | 0.9875 |
| 1:1                                          | -0.03 | -669.09               | 0.06   | 0.9959 |
| 1:2                                          | 0.10  | -845.27               | 0.04   | 0.9972 |
| 1:3                                          | -0.05 | -918.89               | 0.05   | 0.9926 |

Note: A and B are the van't Hoff equation model parameters, RMSE is the root-mean-square deviation,  $R^2$  is the correlation coefficient.



图 3 不同温度下 van't Hoff方程关联 FOX-7 溶解度的曲线 Fig.3 Solubility curves of FOX-7 at different temperature, correlated by the van't Hoff equation

#### 表4 CNIBS/R-K方程关联的模型参数

**Table 4** Model parameters, RMSE and  $R^2$ , correlated by the CNIBS/R-K equation

| T/K    | $B_0$ | <i>B</i> <sub>1</sub> | <i>B</i> <sub>2</sub> | <i>B</i> <sub>3</sub> | $B_4$  | RMSE/% | $R^2$  |
|--------|-------|-----------------------|-----------------------|-----------------------|--------|--------|--------|
| 298.15 | -7.72 | 30.06                 | -71.52                | 83.21                 | -36.76 | 0.00   | 0.9999 |
| 308.15 | -7.56 | 29.03                 | -67.03                | 75.52                 | -32.42 | 0.00   | 0.9999 |
| 318.15 | -7.16 | 26.36                 | -58.68                | 64.12                 | -26.84 | 0.00   | 0.9999 |
| 328.15 | -6.83 | 24.74                 | -54.45                | 58.99                 | -24.54 | 0.00   | 0.9999 |
| 333.15 | -6.96 | 26.33                 | -59.31                | 65.02                 | -27.21 | 0.00   | 0.9999 |

Note:  $B_0$ ,  $B_1$ ,  $B_2$ ,  $B_3$  and  $B_4$  are the CNIBS/R-K equation model parameters, RMSE is the root-mean-square deviation,  $R^2$  is the correlation coefficient.



图 4 不同浓度下 CNIBS/R-K 模型关联 FOX-7 溶解度的曲线 Fig.4 Solubility curves of FOX-7 at different concentration, correlated by the CNIBS/R-K equation

值和实验值相对误差均比较小,最大不超过2%;三种 模型拟合的 RMSE(%)的最大值分别为0.02、0.10和 0.00。结果表明,Apelblat、van't Hoff和 CNIBS/R-K模 型都可以较好地关联溶解度数据(R<sup>2</sup>>0.98),并可以 预测体系中其他温度点下的溶解度数据,可为以后的 结晶过程提供理论依据。

## 3.2 热力学参数

FOX-7在 DMSO-EAC 混合溶剂中的热力学参数 值见表 5。可以看出: $\Delta_{dis}$ H都为正值,表明 FOX-7的 溶解是吸热过程,FOX-7分子和溶剂分子之间的相互 作用比溶剂分子之间的相互作用更强; $\Delta_{dis}$ G也都为 正值,且随着二元混合溶剂中 DMSO 含量的增加而降 低,表明 FOX-7的溶解是非自发过程;此外,% $\xi_{H}$ 始终 大于% $\xi_{s}$ ,表明焓是 FOX-7溶解中吉布斯自由能的主 要贡献者。

表 5 FOX-7在 DMSO-EAC 混合溶剂中的热力学参数值 Table 5 Thermodynamic parameters of FOX-7 in DMSO-EAC mixed solvents

| $V_{(\mathrm{DMSO})}$ : $V_{(\mathrm{EAC})}$ | $\Delta_{ m dis}H$<br>/J·mol <sup>-1</sup> | $\Delta_{d  is} S$<br>/J·K <sup>-1</sup> ·mol <sup>-1</sup> | $\Delta_{d\mathrm{is}}G$<br>/J·mol <sup>-1</sup> | $\% \xi_{ m H}$ | $\% \xi_{\rm S}$ |
|----------------------------------------------|--------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------|------------------|
| 3:1                                          | 4433.79                                    | -0.91                                                       | 4722.48                                          | 93.89           | 6.11             |
| 2:1                                          | 4194.50                                    | -2.24                                                       | 4903.11                                          | 85.55           | 14.45            |
| 1:1                                          | 5563.15                                    | -0.25                                                       | 5641.88                                          | 98.60           | 1.40             |
| 1:2                                          | 7028.00                                    | 0.83                                                        | 6765.55                                          | 96.40           | 3.60             |
| 1:3                                          | 7640.11                                    | -0.42                                                       | 7771.33                                          | 98.31           | 1.69             |

Note:  $\Delta_{dis}H$  is the solution enthalpy of FOX-7,  $\Delta_{dis}S$  is the solution entropy of FOX-7,  $\Delta_{dis}G$  is the Gibbs free energy for the solution process of FOX-7,  $\%\xi_{\rm H}$  is the relative contributions by enthalpy toward the solution process,  $\%\xi_{\rm S}$  is the relative contributions by entropy toward the solution process.

## 3.3 固液表面张力和晶体表面熵因子

FOX-7在DMSO-EAC混合溶剂中的固液表面张 力和晶体表面熵因子见表6和表7。可以看出:二元混 合溶剂中DMSO含量越少,固液表面张力越大,表面 能越高,晶体生长就越慢。随着温度的升高,固液表面 张力减小,说明温度越高,分子运动越剧烈,生长越快; 相同的是,随着温度和二元混合溶剂中DMSO含量的 降低,晶体表面熵因子增加。晶体表面熵因子越大,生 长能垒越高,晶体生长越慢。

## 3.4 晶体形貌表征

采用光学显微镜对 FOX-7 在不同比例的 DMSO-EAC混合溶剂中降温结晶所得的晶体形貌进行 表征,如图5所示。由图5可知,在V<sub>DMSO</sub>:V<sub>EAC</sub>=3:1体系 中得到晶体为立方块状,且有较多不规则碎晶,晶体质

#### FOX-7在DMSO-EAC混合体系中的结晶热力学

表 6 FOX-7在 DMSO-EAC 混合溶剂中的固液表面张力 Table 6 The solid-liquid surface tension of FOX-7 in DMSO-EAC mixed solvents mJ·m<sup>-2</sup>

| τ/ν    | V <sub>DMSO</sub> : V <sub>EA</sub> | С     |       |       |       |
|--------|-------------------------------------|-------|-------|-------|-------|
| 1/ N   | 3:1                                 | 2:1   | 1:1   | 1:2   | 1:3   |
| 298.15 | 11.23                               | 11.83 | 14.56 | 18.22 | 21.08 |
| 308.15 | 11.20                               | 11.90 | 14.58 | 18.24 | 21.22 |
| 318.15 | 11.11                               | 11.89 | 14.53 | 18.21 | 21.26 |
| 328.15 | 10.97                               | 11.77 | 14.39 | 18.09 | 21.16 |
| 333.15 | 10.90                               | 11.68 | 14.32 | 17.99 | 21.07 |

量较差;在 V<sub>DMSO</sub>: V<sub>EAC</sub>=1:3体系中得到晶体形状更规则统一呈椭球状,没有团聚现象,晶体缺陷少;随着混 合溶剂中 EAC 含量的增加,晶体从立方块状逐渐变为 光滑椭球状。进一步结合 FOX-7在 DMSO-EAC 混合 溶剂中的固液表面张力和晶体表面熵因子计算结果分



**a.**  $V_{\text{DMSO}}: V_{\text{EAC}} = 3:1$ 



 $V_{\rm DMSO}: V_{\rm EAC} = 2:1$ 

表7 FOX-7在DMSO-EAC混合溶剂中的晶体表面熵因子 Table 7 The crystal surface entropy factor of FOX-7 in DMSO-EAC mixed solvents

| τ/ν    | V <sub>DMSO</sub> : V <sub>EAC</sub> |      |      |      |      |  |  |  |
|--------|--------------------------------------|------|------|------|------|--|--|--|
| 1/ N   | 3:1                                  | 2:1  | 1:1  | 1:2  | 1:3  |  |  |  |
| 298.15 | 2.81                                 | 2.96 | 3.65 | 4.57 | 5.28 |  |  |  |
| 308.15 | 2.71                                 | 2.88 | 3.53 | 4.42 | 5.14 |  |  |  |
| 318.15 | 2.61                                 | 2.79 | 3.41 | 4.28 | 4.99 |  |  |  |
| 328.15 | 2.50                                 | 2.68 | 3.28 | 4.12 | 4.82 |  |  |  |
| 333.15 | 2.44                                 | 2.62 | 3.21 | 4.03 | 4.73 |  |  |  |

析可知,FOX-7在V<sub>DMSO</sub>: V<sub>EAC</sub>=1:3体系中的固液表面 张力最大,晶体生长最慢。相同的是,在该体系中晶体 表面熵因子也是最大,且都约5.0,可以判定为螺旋位 错生长模式<sup>[32]</sup>,即晶体表面非常光滑,生长速率缓慢, 晶体更为致密。



**c.**  $V_{\text{DMSO}}: V_{\text{EAC}} = 1:1$ 



**d.**  $V_{\text{DMSO}}: V_{\text{FAC}} = 1:2$ 



**e.**  $V_{\text{DMSO}}: V_{\text{EAC}} = 1:3$ 

图 5 FOX-7在DMSO-EAC混合溶剂中的晶体显微照片(×40) Fig.5 The crystal micrographs of FOX-7 in DMSO-EAC mixed solvents (×40)

## 4 结论

(1)采用激光动态法测定了 298.15-333.15K 温度 范围内 FOX-7 在不同体积比的 DMSO-EAC 混合溶剂 中的溶解度。结果表明,FOX-7 在混合溶剂中的溶解 度随温度的升高和 DMSO 含量的增加而增大,其溶解 为吸热过程。

(2)用 Apelblat、van't Hoff 和 CNIBS/R-K 模型对 实验溶解度数据进行拟合,得到溶解度计算值和实验 值相对误差均比较小,最大不超过 2%,所有模型拟合 结果良好;建立了溶解度方程,三种关联模型所得方程 计算得到的溶解度数值均与实验值吻合度高,其中 CNIBS/R-K模型对实验数据的关联结果最优;FOX-7 的溶解度数值与关联模型可作为基础数据与模型应用 于FOX-7的结晶过程控制。

(3)计算获得了 FOX-7 在 DMSO-EAC 混合溶剂 中的溶解焓、溶解熵和吉布斯自由能等热力学参数。 以平均温度 315.65 K 计算,FOX-7 的溶解焓和吉布斯 自由能在 DMSO-EAC 混合溶剂中都为 4~8 kJ·mol<sup>-1</sup>, 说明 FOX-7 的溶解过程是吸热且非自发的。

(4)利用实验溶解度数据估算了FOX-7的固液表面 张力和晶体表面熵因子。FOX-7在 V<sub>DMSO</sub>: V<sub>FAC</sub>=1:3体

含能材料

系中的固液表面张力和晶体表面熵因子最大,晶体生 长最慢,降温结晶得到的椭球状晶体,生长方式为螺旋 位错生长模式。

#### 参考文献:

- [1] Latypov N V, Bergman J, Langlet A, et al. Synthesis and reaction of 1, 1'-diamino-2, 2'-dinitroethylene [J]. *Tetrahedron*, 1998, 54(38): 11525-11536.
- [2] 周诚,黄新萍,周彦水,等.FOX-7的晶体结构和热分解特性
  [J].火炸药学报,2007,30(1):60-63.
  ZHOU Cheng, HUANG Xin-ping, ZHOU Yan-shui, et al. Crystal structure and thermal decomposition of FOX-7[J]. Chinese Journal of Explosives and Propellants, 2007, 30(1): 60-63.
- [3] 蔡华强,舒远杰,郁卫飞,等.1,1-二氨基-2,2-二硝基乙烯的研究进展[J].含能材料,2004,12(2):124-128.
  CAI Hua-qiang, SHU Yuan-jie, YU Wei-fei, et al. Research development of 1,1-diamino-2,2-dinitroethylene[J]. *Chinese Journal of Energetic Materials*(Hanneng Cailiao), 2004, 12 (2):124-128.
- [4] 龙宗昆.1,1-二氨基-2,2-二硝基乙烯的合成研究进展[J].广州 化学,2013,38(4):71-78.
   LONG Zong-kun. Research development of 1, 1-diamino-2, 2-dinitroethylene synthesis[J]. *Guangzhou Chemistry*, 2013, 38(4):71-78.
- [5] 徐抗震, 宋纪蓉, 赵凤起, 等.1,1'-二氨基-2,2'-二硝基乙烯的 比热容、热力学性质及绝热至爆时间研究[J]. 化学学报, 2007, 65(24): 2827-2831.
  XU Kang-zhen, SONG Ji-rong, ZHAO Feng-qi, et al. Special heat capacity, thermodynamic properties and adiabatic time-to-explosion of 1,1'-diamino-2,2'-dinitroethylene[J]. Acta Chimica Sinica, 2007, 65(24): 2827-2831.
- [6] 陈咏顺, 徐抗震, 王敏, 等. FOX-7的反应性研究进展[J]. 含能 材料, 2012, 20(1): 120-125.
  CHEN Yong-shun, XU Kang-zhen, WANG Min, et al. A review on reactivity of 1, 1-diamino-2, 2-dinitroethylene (FOX-7)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2012, 20(1): 120-125.
- [7] 任晓婷,叶丹阳,丁宁,等.溶剂效应对FOX-7晶体形貌影响的 分子动力学模拟研究[J]. 兵工学报, 2015, 36(2): 272-278.
   REN Xiao-ting, YE Dan-yang, DING Ning, et al. A molecular dynamics simulation of solvent effects on the crystal morphology of FOX-7[J]. Acta Armamentarii, 2015, 36(2): 272-278.
- [8] 兰贯超,王建龙,曹端林,等.3,4-二硝基呋咱基氧化呋咱结晶 工艺[J].含能材料,2016,24(5):427-432.
  LAN Guan-chao, WANG Jian-ling, CAO Duan-lin, et al. Crystallization process of 3,4-bis(3-nitrofurazan-4-y1)furoxan[J]. *Chinese Journal of Energetic Materials*(Hanneng Cailiao), 2016,24(5):427-432.
- [9] Ahn J H, Kim J K, Kim H S, et al. Solubility of 1,1-diamino-2, 2-dinitroethylene in N, N-dimethylformamide, dimethyl sulfoxide, and N methyl2-pyrrolidone[J]. *Journal of Chemical & Engineering Data*, 2009, 54(12): 3259–3260.
- [10] 付秋菠.1,1'-二氨基-2,2'-二硝基乙烯的合成及其性能研究
   [D].成都:四川大学,2007.
   FU Qiu-bo. Synthesis and properties of 1,1'-diamino-2,2'-dinitroethylene[D]. Chengdu: Sichuan University, 2007.

- [11] 周群,陈智群,郑朝民,等.FOX-7 晶体形貌对感度的影响[J]. 火炸药学报,2014,37(5):67-76.
  ZHOU Qun, CHEN Zhi-qun, ZHENG Chao-min, et al. Effect of morphology of FOX-7 crystal on sensitivity[J]. Chinese Journal of Explosives and Propellants, 2014, 37(5):67-76.
- [12] 周诚,黄靖伦,王伯周,等.溶剂对FOX-7晶体相变和热性能的影响[J].火炸药学报,2016,39(4):19-22.
  ZHOU Cheng, HUANG Jing-lun, WANG Bo-zhou, et al. Effect of solvents on phase transformation and thermal properties of FOX-7 crystals[J]. Chinese Journal of Explosives and Propellants, 2016, 39(4): 19-22.
- [13] 刘璐. 高能低感炸药 FOX-7 的结晶研究[D]. 绵阳:西南科技大学, 2018.
   LIU Lu. Crystallization of high-energy low-sensitivity explosive FOX-7 [D]. Mianyang: Southwest University of Science and Technology, 2018.
- [14] Liu L, Li H, Chen D, et al. Solubility of 1,1-diamino-2,2-dinitroethylene in different pure solvents and binary mixtures (dimethyl sulfoxide+water) and (*N*, *N*-dimethylformamide+water) at different temperatures[J]. Fluid Phase Equilibria, 2018, 460: 95–104.
- [15] 刘璐,刘才林,杨海君,等.FOX-7在DMSO-H<sub>2</sub>O二元混合体 系中的结晶研究[J].含能材料,2018,26(8):638-644.
  LIU Lu, LIU Cai-lin, YANG Hai-jun, et al. Crystallization of FOX-7 in DMSO-H<sub>2</sub>O binary mixed system[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2018, 26(8): 638-644.
- [16] Zhao X H, Wang J L, Chen L Z, et al. Crystallization thermodynamics of FOX-7 in three binary mixed solvents[J]. *Journal of Molecular Liquids*, 2019, 295: 111445.
- [17] 赵鑫华,曹端林,王建龙,等.FOX-7在DMSO-H<sub>2</sub>O、DMSO-EtOH、DMSO-ACE二元混合体系中的溶解度及结晶[J]. 火炸药学报,2019,42(5):473-479+489.
  ZHAO Xin-hua, CAO Duan-lin, WANG Jian-long, et al. Solubility and crystallization of FOX-7 in DMSO-H<sub>2</sub>O, DMSO-EtOH and DMSO-ACE binary mixed solvents[J]. *Chinese Journal of Explosives and Propellants*, 2019, 42(5): 473-479+489.
- [18] 刘立媛,张萌,赵鑫华,等.FOX-7在DMF/H<sub>2</sub>O二元体系中的降温结晶动力学[J].含能材料,2020,28(3):215-222.
  LIU Li-yuan, ZHANG Meng, ZHAO Xin-hua, et al. Cooling crystallization kinetics of FOX-7 in DMF/H<sub>2</sub>O binary system
  [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2020, 28(3): 215-222.
- [19] 张静, 胡金伟, 陈丽珍, 等. TNAZ在乙醇-水二元溶剂中的溶解 度[J]. 火炸药学报, 2010, 33(5): 39-42.
  ZHANG Jing, HU Jin-wei, CHEN Li-zhen, et al. Solubility of TNAZ in ethanol-water mixture[J]. *Chinese Journal of Explosives and Propellants*, 2010, 33(5): 39-42.
- [20] 王莹, 雒廷亮, 李延勋, 等. 己二胺溶解度的测定及关联[J]. 化 工中间体, 2008, 4(12): 54-56.
  WANG Ying, LUO Yan-liang, LI Yan-xun, et al. Determination and correlation of solubility of hexamethylenediamine[J]. *Chemical Industry and Petrochemical*, 2008, 4(12): 54-56.
- [21] Acree W E, Zvaigzne A I. Thermodynamic properties of non-electrolyte solutions: Part 4. Estimation and mathematical representation of solute activity coefficients and solubilities in binary solvents using the NIBS and Modified Wilson equations

[J]. Thermochimica Acta, 1991, 178: 151–167.

- [22] Krug R R, Hunter W G, Grieger R A. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data[J]. *Journal* of *Physical Chemistry*, 1976, 80(21): 2335–2341.
- [23] Perlovich G L, Kurkov S V, Bauer-Brandl A. Thermodynamics of solutions: II. Flurbiprofen and diflunisal as models for studying solvation of drug substances[J]. *European Journal of Pharmaceutical Sciences*, 2003, 19(5): 423–432.
- [24] Perlovich G L, Kurkov S V, Kinchin A N, et al. Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs[J]. *European Journal of Pharmaceutics and Biopharmaceutics*, 2004, 57(2): 411–420.
- [25] Mersmann A. Calculation of interfacial tensions[J]. Journal of Crystal Growth, 1990, 102(4): 841–847.
- [26] Barata P A, Serrano M L. Salting-out precipitation of potassium dihydrogen phosphate (KDP). I. Precipitation mechanism
   [J]. Journal of Crystal Growth, 1996, 160(3): 361–369.
- [27] Apelblat A, Manzurola E. Solubilities of manganese, cadmi-

um, mercury and lead acetates in water from T=278.15 K to T=340.15 K[J]. *Journal of Chemical Thermodynamics*, 2001, 33(2): 147–153.

- [28] Zhao Yan. Measurement and correlation of solubility of tetracycline hydrochloride in six organic solvents [J]. *The Journal of Chemical Thermodynamics*, 2013, 57: 9–13.
- [29] SchröDer B, Luís M.N.B.F. Santos, Marrucho I M, et al. Prediction of aqueous solubilities of solid carboxylic acids with COS-MO-RS[J]. *Fluid Phase Equilibria*, 2010, 289(2): 140–147.
- [30] Yu J, Ma T, Li A, et al. Solubility of disodium cytidine 5'-monophosphate in different binary mixtures from 288.15 K to 313.15 K[J]. *Thermochimica Acta*, 2013, 565: 1–7.
- [31] Jouyban-Gharamaleki A, Acree W E. Comparison of models for describing multiple peaks in solubility profiles[J]. *International Journal of Pharmaceutics* (*Amsterdam*), 1998, 167(1): 177–182.
- [32] 陈丽珍. 六硝基茋结晶过程研究[D]. 太原:中北大学, 2017. CHEN Li-zhen. Study on the crystallization process of hexanitroguanidine[D]. Taiyuan: North University of China, 2017.

### Crystallization Thermodynamics of FOX-7 in DMSO-EAC Solvent Mixtures

#### ZHAO Xin-hua, CHEN Li-zhen, WANG Jian-long, HAN Zi-hao

(School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China)

**Abstract:** To facilitate the crystallization of spherical FOX-7, a laser dynamic method was performed to determine the solubility of FOX-7 in the solvent mixtures of DMSO-EAC with different volume ratio in the temperature range of 298.15~333.15 K. The solubility equation was established and the crystallization thermodynamic parameters were estimated. The cooling crystallization experiment was carried out in DMSO-EAC mixed solvent. The results show that the solubility of FOX-7 in mixed solvents increases with increasing temperature and DMSO content. All models fit well with experimental data, of which the CNIBS/R-K model has the best correlation. The crystals of FOX-7 obtained by cooling crystallization in  $V_{DMSO}$ :  $V_{EAC}$ =1:3 system are regular, ellipsoidal and uniform in particle size.

**Key words:** 1, 1-diamino-2, 2-dinitroethylene (FOX-7); laser dynamic method; solubility; crystallization thermodynamics; cooling crystallization

CLC number: TJ55; O64

Document code: A

**DOI:** 10.11943/CJEM2020092

(责编:高毅)