文章编号:1006-9941(2019)03-0236-06

拉曼光谱分析六硝基六氮杂异戊兹烷的晶型纯度

高凤1,孟子晖1,刘文芳1,李志学2,王明辉2

(1.北京理工大学 化学与化工学院,北京 102488; 2. 辽宁庆阳特种化工有限公司,辽宁 辽阳 111102)

摘 要: 为了建立一种简单、高效、重复性好的测定 ε-六硝基六氮杂异戊兹烷(CL-20)中γ晶型杂质含量的方法,确定了用拉曼光 谱定量表征γ-CL-20/ε-CL-20混合样品的特征参数,然后以两种晶型的特征峰峰面积之比 A₂₃₂/A₅₂₈对γ-CL-20含量作图,分别得到了 2%~9%和10%~90%两组浓度范围内的标准曲线,并与采用峰面积法得到的定量结果作了比较。结果表明,当γ-CL-20的含量为 2%~9%时,三组平行实验的 A₂₃₂/A₅₂₈值的相对误差不大于 2.2%, 拟合方程为 y=0.0062e^{0.2512x}, 相关系数为 0.9806。当γ-CL-20的含量为 10%~90%时, A₂₃₂/A₅₂₈的相对误差不超过 2.9%, 拟合方程为 y=0.0822e^{0.0596x}, 相关系数为 0.9816。A₂₃₂/A₅₂₈的数据再现性和拟 合相关性远优于峰面积法。

关键词:六硝基六氮杂异戊兹烷(CL-20);拉曼光谱;定量分析;晶型;纯度 **中图分类号:**TI55;O44.3 **文献标志码:**A

DOI:10.11943/CJEM2018150

1 引言

六硝基六氮杂异戊兹烷(CL-20)是一种军用猛炸 药,具有高密度、高能量、高爆压、高爆速等特点^[1],可 以用于炸药、固体火箭推进剂及发射药^[2]。CL-20有 四种晶型^[3],分别为 α 、 β 、 γ 、 ε 晶型,其中, ε -CL-20的密 度最大,热稳定性最好,感度最低,是唯一具有实际应 用价值的一种晶型。通常,先通过硝化四乙酰基六氮 异伍兹烷(TAIW)生成 γ -CL-20,再进一步转晶生成 ε -CL-20^[4-5]。产品中可能含有的少量 γ -CL-20,不仅 会影响稳定性,还会影响到燃烧和推进速度。因此,对 ε -CL-20 晶型纯度的检测具有重要意义。

拉曼光谱技术是一种可以获取物质结构和官能团 信息的分子光谱技术,与常规分析手段如红外光谱、液 相色谱相比,具有无损、快速、对样品制备没有特殊要 求,对样品量要求低等优点^[6],现已越来越多地应用于

收稿日期: 2018-06-07;修回日期: 2018-08-26
网络出版日期: 2018-11-30
基金项目:086专项基金资助
作者简介:高凤(1992-),女,硕士研究生,主要从事火炸药分析检
测方面的研究。e-mail:1344781237@qq.com
通信联系人:刘文芳(1977-),女,副教授,主要从事高分子材料表
面改性及火炸药分析方法研究。e-mail:liuwenfang@bit.edu.cn

火炸药的定性分析^[7-11]。但由于光谱强度的重复性 差,拉曼光谱用于定量分析的报道还很少见。Goede 等^[12]以ε-CL-20在284 cm⁻¹处的峰面积为基准,曾尝 试确定β和ε、以及γ和ε两种晶型混合物中ε-CL-20 的纯度。国内也有类似的报道,孟征等^[13-14]也利用这 个峰的峰面积分别对β和ε、以及γ和ε-CL-20混合物进 行定量分析。Ghosh^[15]等使用色散拉曼光谱法研究了 ε-CL-20中α晶型杂质的含量;He^[16]等根据主成分分析 (PCA)和量子力学(QM)计算结果选择不同的特征峰, 建立了一种定量测定ε-CL-20中多晶型杂质的新方法; Dumas^[17]等利用傅里叶变换红外-中红外(FTIR-MIR) 光谱和偏最小二乘(PLS)回归相结合的方法测量 CL-20的多晶型组成。以上研究均采用单一的峰面积 对组分含量作标准曲线,以求出ε-CL-20的纯度,尚未 见到利用两种晶型的峰面积之比来分析纯度的报道。

为此,本研究采用拉曼光谱对 ε-CL-20和γ-CL-20 进行了定性分析,提取了定量表征的特征参数,以二者 的峰面积之比对γ-CL-20的含量建立了标准曲线,并与 采用单个峰的峰面积进行定量分析的结果进行了对比。

2 实验部分

2.1 试剂与仪器

美国BWTEK公司OPAL 3000型便携式拉曼光谱

引用本文:高凤,孟子晖,刘文芳,等. 拉曼光谱分析六硝基六氮杂异戊兹烷的晶型纯度[J]. 含能材料,2019,27(3):236-241. GAO Feng,MENG Zi-hui,LIU Wen-fang,et al. Analyzing Crystal Form Purity of Hexanitrohexaazaisowurtzitane(CL-20) by Raman Spectroscopy[J]. *Chinese Journal of Energetic Materials*(Hanneng Cailiao),2019,27(3):236-241. 仪;上海医用恒温设备厂DHG-9053A型电热恒温鼓 风干燥箱;赛多利斯科学仪器(北京)有限公司BS 224S 型电子分析天平。

ε-CL-20 和 γ-CL-20(辽宁庆阳特征化工有限公司),蒸馏水。

2.2 实验过程

2.2.1 单一样品的分析

取少量γ-CL-20或ε-CL-20白色粉末置于样品槽 中,采用拉曼光谱仪对样品进行定性分析。测试条件 为:曝光时间1s,扫描功率50mW,扫描波谱范围为 0~3250 cm⁻¹,自动扫描5次。

2.2.2 混合样品的制备与分析

分析混合样品时, 配制 γ-CL-20 含量从 2%~9% (间隔为 1%)以及 10%~90%(间隔为 10%)的 γ-CL-20/ε-CL-20 混合样品各 100 mg, 置于玛瑙研钵 中, 滴入两滴蒸馏水, 研磨 10 min, 然后置于鼓风干燥 箱中 45 ℃下干燥 3 h, 用拉曼光谱仪分析。

对每个样品做三组平行实验,采用Origin软件对 选定峰面积进行积分,基于平行试验的结果,取算术平 均值,并根据公式(1)计算标准偏差(*S*),根据公式(2) 计算相对误差(*Z*)。

$$S = \sqrt{\frac{\sum_{i=1}^{N} (X_{i} - \bar{X})}{N - 1}}$$
(1)

$$Z = \frac{X_i - \bar{X}}{\bar{X}} \times 100\%$$
(2)

式中, X_i 为实测数据, \overline{X} 为平行实验各组数据的平均值,N为平行试验的组数。

3 结果与讨论

3.1 ε-CL-20 和 γ-CL-20 单一样品的定性分析及特征 参数提取

ε-CL-20和γ-CL-20的拉曼光谱见图1。由图1可 知,ε-CL-20的出峰位置为143,197,268,321,347, 528,823,836,1053,1279,1610,1628 cm⁻¹。其中, 1610,1628 cm⁻¹为N—NO₂的伸缩振动峰,1279 cm⁻¹ 为C—C的伸缩振动峰,143,197,268,321,347 cm⁻¹ 可能为C骨架的伸缩振动峰。γ-CL-20的出峰位置在 141,176,232,270,286,310,848,982,1256,1276, 1314,1608 cm⁻¹处。其中,1256,1276,1608 cm⁻¹为 N—NO₂的伸缩振动峰,1314 cm⁻¹为C—C的伸缩振 动峰,141,176,232,270,286,310 cm⁻¹为C骨架的 伸缩振动峰。两种晶型的出峰位置和相对强弱均存在 差别。 ε-CL-20 最强的峰出现在 143 cm⁻¹,其次是 321 cm⁻¹,接下来是 823、347 和 1279 cm⁻¹;而 γ-CL-20 最强的峰出现在 310 cm⁻¹,其次是 232 cm⁻¹。

与文献[8]比较,ε-CL-20在250~300 cm⁻¹,810~ 870 cm⁻¹,1000 cm⁻¹附近,1200~1400 cm⁻¹,1550~ 1630 cm⁻¹范围内的实测值与文献基本没有差别;而文 献中报道的791,755 cm⁻¹两个峰,却在测量中未出现; 在波数低于250 cm⁻¹时,ε-CL-20出现143、197 cm⁻¹两 个特征峰,文献中未报道。γ-CL-20在1020,1550 cm⁻¹ 两处特征峰的波数与文献中(1053,1608 cm⁻¹)差别 较大,且文献在141,176,232,310 cm⁻¹处并未出现 特征峰。所测数据与文献报道之间的差别,可能是由 于产品成分以及测量仪器的差异导致的。

图 1 ε-CL-20 和 γ-CL-20 的拉曼光谱 **Fig.1** Raman spectra of ε-CL-20 and γ-CL-20

为了实现对 ε -CL-20/ γ -CL-20混合样品的定量分 析,对 ε -CL-20与 γ -CL-20的拉曼光谱图局部放大 (图2),以找出不相重叠的特征峰,确定特征参数。从 图2可以看出,对 ε -CL-20来说,与 γ -CL-20不重叠的 特征峰依次出现在143,321,347,528,823 cm⁻¹,其 中,在528 cm⁻¹处的峰型较好,与 γ -CL-20的特征峰区 分明显,故选用该峰作为 ε -CL-20定量分析的特征峰; 而对 γ -CL-20来说,与 ε -CL-20不重叠的特征峰出现在 232,286,310 cm⁻¹和847 cm⁻¹,其中,232 cm⁻¹处的 峰型较好,故选用该峰作为 γ -CL-20定量分析的特 征峰。

3.2 ε-CL-20/γ-CL-20 混合样品的定量分析

图 3 为 γ-CL-20 含量为 2%~9%、10%~90% 的 17 个 ε-CL-20/γ-CL-20 混合样品的拉曼光谱图。对 γ-CL-20在232 cm⁻¹处的特征峰和ε-CL-20在528 cm⁻¹ 处的特征峰面积积分,求得的 A₂₃₂、A₅₂₈和 A₂₃₂/A₅₂₈以及 它们的算术平均值、标准偏差(S)和相对误差(Z)列于 表 1。A₂₃₂、A₅₂₈和 A₂₃₂/A₅₂₈对 γ-CL-20 含量的拟合曲线 见图 4。

CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

由表1可知,三组平行实验的A232和A528相差较 大。随着γ-CL-20含量增加,混合样品的A232和A528的 规律性不强。在去掉2%和3%两组数据后,混合样品 的 A₂₃₂ 对 γ-CL-20 含量的 拟合相关度变好, R² 值从 0.5591 提高到 0.9666(图 4a)。从图 4b 中可以看出, 以A₅₂₈对γ-CL-20含量作图,规律性也不好,相关度只 有 0.3618。与单个峰的面积相比, 混合样品的 A232/A528 的重复性以及规律性则好得多(图4c),在各个配比

下,三组平行实验的A232/A528相对误差不超过2.2%, A232/A528的拟合结果优于A232和A5280

采用同样的方法对γ-CL-20含量为10%~90%的 混合样品进行分析,结果见图5。由图5a和图5b可 知,尽管与低浓度组相比,高浓度组的峰面积 A232 或 A₅₂₈数据对γ-CL-20含量拟合的相关度有所提高,但均 低于0.9,说明数据的规律性不够好;且从数据点的误 差限可看出,当固定组分配比进行多次测量时,峰面积

图2 ε-CL-20 和 γ-CL-20 的拉曼光谱的局部放大图

Fig.2 Partially enlarged views of the Raman spectra of ε -CL-20 and γ -CL-20

表1 γ-CL-20含量为2%~9%时γ-CL-20/ε-CL-20混合样品的A₂₃₂和A₅₂₈以及A₂₃₂/A₅₂₈ **Table 1** Values of A_{232} , A_{528} and A_{232}/A_{528} of γ -CL-20/ ϵ -CL-20 mixed samples with γ -CL-20 content of 2%-9%

parallel	2%			3%			4%			5%		
experiment	A ₂₃₂	A ₅₂₈	A ₂₃₂ /A ₅₂₈	A ₂₃₂	A ₅₂₈	A_{232}/A_{528}	A ₂₃₂	A ₅₂₈	A ₂₃₂ /A ₅₂₈	A ₂₃₂	A ₅₂₈	A_{232}/A_{528}
1	75.98	6606.9	0.0115	26.66	2082.8	0.0128	25.56	1692.7	0.0151	36.06	1785.1	0.0202
2	84.33	7207.6	0.0117	58.95	4500	0.0131	39.81	2551.9	0.0156	65.43	3115.2	0.0210
3	63.45	5615.0	0.0113	40.14	3087.7	0.0130	39.69	2577.3	0.0154	40.42	1952.7	0.0207
average value	74.59	6476.6	0.0115	41.92	3223.5	0.0130	35.02	2274.0	0.0154	47.30	2284	0.0206
S	8.581	665.79	0.0002	13.24	991.5	0.0001	6.689	411.1	0.0002	12.94	591.5	0.0003
Z/%	1.9-14.9	2-13.3	0-1.7	4.2-40.6	0.4-39.6	0.2-1.3	4.67-27.0	12-25.6	0-1.9	14.5-38.3	14.5-21.8	0.5-1.9
parallel	6%			7%			8%			9%		
experiment	A ₂₃₂	A ₅₂₈	A_{232}/A_{528}	A ₂₃₂	A ₅₂₈	A_{232}/A_{528}	A ₂₃₂	A ₅₂₈	A_{232}/A_{528}	A ₂₃₂	A ₅₂₈	A_{232}/A_{528}
1	63.75	2090.2	0.0305	55.59	1726.4	0.0322	115.8	2382.7	0.0486	239.7	3846.7	0.0623
2	92.11	3000.3	0.0307	83.21	2560.3	0.0325	171.9	3559.4	0.0483	143.9	2325.0	0.0619
3	58.91	1894.2	0.0311	77.83	2439.8	0.0319	102.5	2105.5	0.0487	99.89	1555.9	0.0642
average value	71.59	2328.2	0.0308	72.21	2242.2	0.0322	130.1	2682.6	0.0485	161.2	2579.9	0.0628
S	14.64	481.9	0.0003	11.96	368	0.0003	30.07	630.3	0.0002	58.34	951.9	0.0001
Z/%	11.0-28.7	10.2-28.8	0.3-1.0	7.8-23	8.8-23	0-0.9	11-32	11.2-32.7	0.2-0.4	10.7-42.5	9.8-49	0.8-2.2

238

Chinese Journal of Energetic Materials, Vol.27, No.3, 2019 (236-241)

图3 ε-CL-20/γ-CL-20 混合样品的拉曼光谱

Fig.3 Raman spectra of ε -CL-20/ γ -CL-20 mixed samples

图 4 A_{232} 、 A_{528} 和 A_{232}/A_{528} 对 γ -CL-20 含量(2%~9%)的拟合曲线 Fig. 4 Fitting curves of A_{232} , A_{528} and A_{232}/A_{528} vs. γ -CL-20 content of 2%-9%

图 5 A₂₃₂,A₅₂₈和A₂₃₂/A₅₂₈对γ-CL-20含量(10%~90%)的拟合曲线 **Fig.5** Fitting curves of peak area vs. γ-CL-20 content of 10%-90%

CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

的重复性不好,导致误差较大。因此,文献中报道的用 ε-CL-20特征峰面积来定量的方法是不可行的。

而从图 5c则可以看出,采用 A₂₃₂/A₅₂₈ 对 γ-CL-20 含量拟合的相关度高达 0.9816,说明不同配比得到的 数据的规律性非常好;图中几乎观察不到每个点的误 差限,这是因为误差太小的缘故。实际上,在各个配比 下,混合样品的 A₂₃₂/A₅₂₈的相对误差不超过 2.9%。由 此可知,采用两种组分的特征峰面积之比来定量分析 ε-CL-20的晶型纯度是可行的,不但简单快速,而且更 加可靠。在同样条件下测定杂质含量未知的 ε-CL-20 样品的 A₂₃₂/A₅₂₈值,对照相应范围内的标准曲线,即可 得知 γ 晶型杂质的含量。

4 结论

采用拉曼光谱,通过对 ε 和 γ 晶型 CL-20 分析,提 取了两种晶型 CL-20 的定量表征的特征参数,以峰面 积及峰面积之比 A₂₃₂/A₅₂₈分别对 γ-CL-20 含量建立了 标准曲线,得出以下结论:

(1)ε-CL-20 最强的峰出现在143 cm⁻¹,其次是
321 cm⁻¹,接下来是823,347 cm⁻¹和1279 cm⁻¹;而
γ-CL-20 最强的峰出现在310 cm⁻¹,其次是235 cm⁻¹。
不同批次ε-CL-20 的拉曼光谱完全重合。

(2)γ-CL-20 与ε-CL-20 互不重叠的特征峰分别为 γ-CL-20 的 310, 232 cm⁻¹ 和 ε-CL-20 的 143, 321, 528, 823, 1279 cm⁻¹, 其中, γ-CL-20 在 232 cm⁻¹ 和 ε-CL-20 在 528 cm⁻¹ 作为对 γ-CL-20/ε-CL-20 混合样 品定量分析的特征峰。

(3) *A*₂₃₂/*A*₅₂₈的数据重复性和规律性明显优于 *A*₂₃₂ 和 *A*₅₂₈,特别是在 γ-CL-20含量比较低的情况下。且无 论浓度高低,*A*₂₃₂/*A*₅₂₈的三组平行实验的相对误差均不 超过 2.9%。在 γ-CL-20含量为 2%~9% 和 10%~90% 时,峰面积之比与 γ-CL-20含量的拟合方程分别为 *y*=0.0062e^{0.2512x}和 *y*=0.0822e^{0.0596x},相关系数分别为 0.9806和 0.9816。

(4)采用两种组分的特征峰面积之比来定量分析 ε-CL-20的晶型纯度是可行的,不仅简单快速,而且更 加可靠。

参考文献:

 [1] 曾贵玉,聂福德,刘晓东,等.六硝基六氮杂异伍兹烷(CL-20)的 研究进展[J].含能材料,2000,8(3):130-134.
 ZENG Gui-yu, NIE Fu-de, LIU Xiao-dong, et al. Advances in research on hexanitrohexane (CL-20)[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2000,8(3):130-134.

- [2] 欧育湘,孟征,刘进全.高能量密度化合物 CL-20应用研究进展
 [J]. 化工进展, 2007, 26(12): 1690-1694.
 OU Yu-xiang, MENG Zheng, LIU Jin-quan. Progress in application of high energy density compound CL-20[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1690-1694.
- [3] 徐金江,孙杰,周克恩,等. CL-20重结晶过程中的晶型转变研究 进展[J]. 含能材料, 2012, 20(2): 102-105.
 XU Jin-jiang, SUN Jie, ZHOU Ke-en, et al. Progress in crystallization transformation in recrystallization of CL-20[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2012, 20(2): 102-105.
- [4] Nair U R, Sivabalan R, Gore G M, et al. Hexanitrohexaazai-sowurtzitane (CL-20) and CL-20-based formulations (review)
 [J]. Combustion Explosion & Shock Waves, 2005, 41 (2) : 121–132.
- [5] 钱华,叶志文,吕春绪.N₂O₅/HNO₃ 硝解 TAIW 合成 CL-20[J].
 应用化学,2008,25(3): 378-380.
 QIAN Hua, YE Zhi-wen, LÜ Chun-xu. Nitration of N₂O₅ / HNO₃ TAIW synthesis CL-20[J]. Chinese Journal of Applied Chemistry, 2008, 25(3): 378-380.
- [6] 高凤,刘文芳,孟子晖,等.激光拉曼光谱技术在火炸药分析检测中的应用研究进展[J]. 含能材料, 2018(2): 185-196.
 GAO Feng, LIU Wen-fang, MENG Zi-hui, et al. Progress in application of laser raman spectroscopy in analysis and detection of explosives[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2018(2): 185-196.
- [7] Pan B, Dang L, Wang Z, et al. Preparation, crystal structure and solution-mediated phase transformation of a novel solid-state form of CL-20 [J]. Crystengcomm, 2018, 20 (11) : 1553-1563.
- [8] Kholod Y, Okovytyy S, Kuramshina G, et al. An analysis of stable forms of CL-20: A DFT study of conformational transitions, infrared and Raman spectra [J]. *Journal of Molecular Structure*, 2007, 843(1-3): 14-25.
- [9] Patel R B, Stepanov V, Qiu H. Dependence of raman spectral intensity on crystal size in organic nano energetics[J]. Applied Spectroscopy, 2016, 70(8): 1339–1345.
- [10] An C, Li H, Ye B, et al. Nano-CL-20/HMX cocrystal explosive for significantly reduced mechanical sensitivity [J]. *Journal of Nanomaterials*, 2017, 2017(5): 1–7.
- [11] Liu K, Zhang G, Luan J, et al. Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/ DNT[J]. Journal of Molecular Structure, 2016, 11(10):91-96.
- [12] Goede P, Latypov N VÖstmark H. Fourier transform raman spectroscopy of the four crystallographic phases of α , β , γ and ε 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexazatetracyc-lo[5.5.0.05, 9.03, 11] dodecane (HNIW, CL-20)[J]. *Propellants, Explosives, Pyrotechnics*, 2004, 29(4): 205–208.
- [13] 孟征,卫宏远.用傅里叶变换拉曼光谱定量分析 HNIW 的γ和ε 晶型混合物[J].火炸药学报,2010,33(5):12-18.
 MENG Zheng, WEI Hong-yuan. Fourier transform raman spectroscopy was used to quantitatively analyze the gamma and epsilon crystal mixtures of HNIW[J]. Chinese Journal of Explosives and Propellants, 2010, 33(5): 12-18.
- [14] 孟征,卫宏远.用傅里叶变换拉曼光谱定量分析 HNIW 的β和ε 晶型混合物[J].含能材料,2011,19(3):339-342.
 MENG Zheng, WEI Hong-yuan. Quantitative analysis of beta and epsilon crystal mixtures of HNIW by Fourier transform ra-

Chinese Journal of Energetic Materials, Vol.27, No.3, 2019 (236-241)

含能材料

man spectroscopy [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2011, 19(3): 339-342.

- [15] Ghosh M, Venkatesan V, Sikder N, et al. Quantitative analysis of α -CL-20 polymorphic impurity in ε -CL-20 using dispersive raman spectroscopy[J]. *Central European Journal of Energetic Materials*, 2013, 10(3): 419–438.
- [16] He X, Liu Y, Huang S L, et al. Raman spectroscopy coupled

with principal component analysis to quantitatively analyze four crystallographic phases of explosive CL-20 [J]. *RSC Advances*, 2018, 8: 23348–23352.

[17] Dumas S, Gauvrit J Y, Lanteri P. Determining the polymorphic purity of *e*-CL-20 contaminated by other polymorphs through the use of FTIR spectroscopy with PLS regression [J]. *Propellants*, *Explosives*, *Pyrotechnics*, 2012, 37(2): 230–234.

Analyzing Crystal Form Purity of Hexanitrohexaazaisowurtzitane(CL-20) by Raman Spectroscopy

GAO Feng¹, MENG Zi-hui¹, LIU Wen-fang¹, LI Zhi-xue², WANG Ming-hui²

(1. School of Chemical & Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; 2. Liaoning Qingyang Special Chemical Co., Ltd., Wensheng District, Liaoyang 111002, China)

Abstract: To establish a simple, efficient and good reproducible method of measuring the content of γ -crystal form impurities in ε -hexanitrohexaazaisowurtzitane (ε -CL-20), the characteristic parameters for the quantitative characterization of γ -CL-20/ ε -CL-20 mixed samples were determined by Raman spectroscopy, and then, the characteristic peak area ratio A_{232}/A_{528} of two crystal forms was plotted against γ -CL-20 content. The standard curves in the two sets of concentration ranges of 2%-9% and 10%-90% were obtained respectively and compared with the quantitative results obtained by the peak area method. Results show that when the content of γ -CL-20 is 2%-9%, the relative error of A_{232}/A_{528} values for three sets of parallel experiments is not more than 2.2%, and the fitting equation is y=0.0062 $e^{0.2512x}$ with a correlation coefficient of 0.9806. When the content of γ -CL-20 is 10%-90%, the relative error of A_{232}/A_{528} is not exceed 2.9%, and the fitting equation is y=0.0822 $e^{0.0596x}$ with a correlation coefficient of 0.9816. Data reproducibility and fitting correlation coefficient of A_{232}/A_{528} are far better than the peak are method.

Key words: hexanitrohexaazaisowurtzitane(CL-20);Raman spectroscopy;quantitative analysis;crystal form;purityCLC number: TJ55; O44.3Document code: ADOI: 10.11943/CJEM2018150

(责编 张 琪)

更正

本刊 2018 年第 10 期第 818 页中,"钛合金飞片的速度能够达到 4.01 km·s⁻¹"应为"铝飞片的速度能够达到 4.01 km·s⁻¹"。

特此更正。

中国工程物理研究院化工材料研究所 陈清畴