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Crystal Structure and Thermal Behavior of Potassium Dinitromethane
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Abstract: Potassium dinitromethane {K[ CH(NO, ), ]

]
I'n

was synthesized. The single-crystal structure of { K[ CH(NO, ), ]|, was determined, which is

triclinic, space group P-1 with crystal parameters of a=4.5285(11) A, b=7.0377(17) A, c=7.8543(19) A, @=70.671(3)°, B= 88.557(3)°, y=
75.818(4)°, V=228.58(10) A*, Z=2, D_=2.094 g - cm™, F(000)= 144, $=1.060, s (Mo K, )=1.077 mm~"', R, =0.0457, wR, =0.1399,
(Ap) ;1. =0.484 e - A= and (Ap) ., =-1.278 e - A, Thermal behavior of { K[ CH(NO, ), ]}, was studied by DSC and TG-DTG methods. DSC

I'n

result presented two exothermic processes. The self-accelerating decomposition temperature and critical temperature of thermal explosion of

{K[CH(NO,), ]!

n

are 161. 0 °C and 162. 8 °C, respectively. { K[ CH (NO, ), ]}, presents lower thermal stability than K ( DNDZ) and

K(AHDNE) , but higher thermal stability than K(NNMPA). {K[CH(NO,), ]}, is relatively insensitive.

Key words: 1-amino-1-hydrazino-2,2-dinitroethylene; potassium dinitromethane; crystal structure; thermal behavior

CLC number; 0621.2; 0642 Document code: A

DOI: 10.11943/j.issn.1006-9941.2016.09.010

1 Introduction

1, 1-Diamino-2, 2-dinitroethylene ( FOX-7) is a novel
high-energy and insensitive compound''", and has been con-
sidered as the main component to be used in insensitive am-
munitions and solid propellants in future. Though the molecu-
lar composition and structure of FOX-7 are very simple, its
chemical reactivity is surprising'®”’.
2-dinitroethylene (AHDNE) is a nucleophilic substitution de-

rivative of FOX-7. AHDNE still belongs to “push-pull” nitro-

1-Amino-1-hydrazino-2,

enamine compound®’, and has the same characteristics to
FOX-7. Some energetic salts of AHDNE, such as potassium
salt [K(AHDNE) ] and guanidinium salt [ G(AHDNE) ], have

been reported™ ™",

Like many complexes of FOX-7'"™"),
some metal complexes (Cd, Zn and Ni) of AHDNE were ex-
pected to be synthesized, using K(AHDNE) as a raw material.
But the result shows that potassium dinitromethane { K[ CH
(NO,), 11

double bond of AHDNE™ anion in ammonia water at room

, was obtained with the fracture of carbon-carbon
temperature, which was caused by the addition of Zn** with
the solution exhibiting strong alkalinity.

{K[CH(NO,), 11, was first synthesized by Villiers with a
quite low yield in 1884, through the reduction of potassium
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bromonitromethane with hydrogen sulfide ',

Feuer obtained
this salt with a yield of 23% by Ter Meer reaction of chloroni-
tromethane '"7'. Noble reported that { K[ CH(NO,), ]!, can
be prepared from the alkali metal salts of dinitroethane """’
Grakauskas improved the yield to 33% through the synthetic
routine of methylcyano dinitromethane acetic acid or methyl
dinitro acetic acid ""’. In recent years, some organic salts of
dinitromethane, such as 1,3-dimethylimidazolium dinitrometh-
ane, ammonium dinitromethane, and 1-butyl-3-methyl-imid-
azolium dinitromethane, have been reported to be potential en-
ergetic materials'"*™"".

In this paper, we reported crystal structure of potassium
dinitromethane, investigate its thermal behavior by DSC and
TG/DTG, and compared with three similar potassium salts,

aiming at enriching the research studies of energetic materials.

2 Experiments

2.1 Sample
FOX-7 was obtained from Xi’an Modern Chemistry Research
Institute. K(AHDNE) was prepared according to Ref. [11].

{ K [CH (NO,), ]I, was obtained by dissolving
Zn(NO,),(0.357 g, 1.2 mmol) and K(AHDNE) (0.402 g,
2 mmol) in ethylenediamine aqueous solution (6 mL). In this
reaction system, C — C bond was broken due to the strong al-
kalinity of the solution at room temperature and the catalytic in-
fluence of Zn**. Many yellow crystals of {K[ CH(NO,), ]},
were formed, which were filtered, washed with distilled water
and dried under vacuum, yielding 0.461 g (32% ) (Scheme 1).
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FT-IR (KBr, »/ cm™ ). 3146, 1463, 1413, 1365, 1300, lengths and bond angles are listed in Table 2.
1208, 1079, 1001, 785, 746, 690; Elemental Anal. Calcd.
for CHN,O,K(% ). C7.28, H0.80, N 20.10(% ) ; Found: Table 1  Crystal data and structures refinement details
C7.25,H0.83, N20.15 %. chemical formula K[CH(NO;), ]
formula mass/g - mol™ 144.14
O,N temperature /K 296(2)
2! . NHZ 100°C 02N . NHNHQ o4 p
> < + HN—NH, o > < e wavelength/nm 0.071073
ON NH, 2 O.N NHNH, -
FOX-7 AHDNE crystal system triclinic
- — Zn(en),(AHDNE): space grou P-1
[oN N—NH, HQN/ \NH2 2 2 p ! group
K — 20 /Noz al/A 4.5285(11)
n +|H— o
ON NH, o2 K |H—=C bIA 7.0377(17)
K(AHDNE) NO, ]
{KICH(NO,),1}, c/A 7.8543(19)
al/(°) 70.671(3)
Scheme 1 Synthetic route of {K[CH(NO,), ]},
B/(°) 88.557(3)
i i y/(°) 75.818(4)
2.2 Equipments and Conditions .
) V/A3 228.58 (10)
Elemental analyses were performed on a VarioEL 1II ele- S 5
mental analyzer (Elemental Co., Germany). IR spectra were .
D. /g - cm 2.094
determined on EQUINX55 with KBr pellets. DSC curves under ) - :
. 4 absorption coefficient/mm~ 1.077
a nitrogen atmosphere at a flow rate of 20 mL - min™ were ob-
F(000) 144.0
tained by using a DSC 200 F3 media (NETZSCH, Germany),
0/(°) 2.75-25.00
heating rates used were 5.0, 7.5, 10.0 °C - min~' and )
index ranges -3<h<5, -6<k<8,-9<I<9
12.5 °C - min™' from ambient temperature to 400.0 °C, re- .
reflections collected 804
spectively. TG-DTG experiment was performed using a SDT- reflections unique 778
Q600 apparatus (TA, USA) under the co:dmon of flow nitro- refinement method full-matrix least-squares on F
gen gas at a flow rate of 10? mL - min™ . The heating rate goodness-of-fit on F? 1.060
[ . PN H
used was 10. 0 °C - min~ from ambient temperature to final R indices [ 1520 (1) ] R, =0.0457, wR,=0.1399
400.0 °C. The impact sensitivity was determined by using a R indices (all data) R, =0.0473, wR, =0.1364
ZBL-B impact sensitivity instrument (NACHEN, China). The largest diff. peak

mass of drop hammer is 2.5 kg. The sample mass is 30 mg. and hole/e - A3 0.484 and —1.278

2.3 Determination of the Single Crystal Structure

The crystal with dimensions of 0.39 nmx0.21 nmx0.19 mm
was chosen for X-ray diffraction. The data were collected on a
Bruker SMART APEX CCD X-ray diffractometer using graphite-
monochromated Mo K_ radiation (A =0. 071073 nm). The
structure was solved by the direct methods (SHELXTL-97) and
refined by the full-matrix-block least-squares method on F

with anisotropic thermal parameters- for all non-hydrogen Fig. 1 Minimum asymmetric unit of {K[CH(NO,), ]},

atoms!?27%

{K[ICH(NO,), ]}
1059465.

Crystal data and refinement results of
are summarized in Table 1 (CCDC No. :

n

3 Results and Discussion

3.1 Crystal Structure
{K[CH(NO,), ]}, crystallizes in the triclinic system with

space group P-1 containing two molecules per unit cell. The
minimum asymmetric unit, coordinated environments of K* Fig.2 Coordinated environments of K* ion

ion and crystal packing are shown in Figs.1-3. Selected bond
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Fig.3 Crystal packing of {K[CH(NO,), ]|

The crystallographic studies show that { K[CH(NO,), ]},
consists of a K" ion and a [CH(NO, ), ] anion (Fig.1). Delo-
calization of the negative charge on the entire [CH(NO, ), ] an-
ion is evident from these bond lengths combined with the pla-
narity: bond lengths of C(1)—N(2) (0.13640 nm) and
C(1)—N(1) (0.13715 nm) are much shorter than the aver-
age value for a normal C—N single bond (0.147 nm) " but
significantly longer than the normal C — N double bond
(0.134 nm)P*'. A similar trend is observed by corresponding
N—O bonds of [CH(NO,),]™ anion [N(2)—O(4) (0.12596 nm),
N(2)—O(3) (0.12522 nm), N(1)—O(1) (0. 12499 nm),
N(1)—O(2) (0.12411 nm) ], which are greatly longer than a
normal N = O double bond but shorter than a N—O single
bond. From the selected bond angles [N (2)—O (4)—K (1)
(135.3°), O(3)—N(2)—O0(4) (120.0°), O(3)—N(2)—C(1)
(124.4°) ,0(4)—N(2)—C(1)(115.6°) ,N(2)—C(1)—N(1)

(122.8°),0(2)—N(1)—0(1)(119.8°) ,0(2)—N(1)—C(1)
(124.3°), O(1)—N(1)—C(1) (115.9°)], it can be seen that the
structure is distorted. The —NO, and —CH groups in the anion
are almost coplanar, which is supported by the torsion angles
[O(3)—N(2)—C(1)—N(1) (6.2°), O(4)—N(2)—C(1)—N(1)
(=171.4°), N(2)—C(1)—N(1)—0(2) (-9.8°), N(2)—C(1)—
N(1)—O(1) (169.7°)], and the torsion angles between K* and
[CH(NO,),] are [K(1)—O(4)—N(2)—O(3) (89.7°),
K(1)—0O(4)—N(2)—C(1) (-92.6°)].

Fig.2 indicates that each K" ion is connected with six adja-
cent [CH (NO, ), ] anions through eight K—O coordinated
bonds [K(1)—O(2)B#2 (0.28152 nm), K(1)—O(3)B#2
(0.28007 nm), K(1)—O(4)C#1 (0.30856 nm), K(1)—O(3)
C#1(0.27978 nm), K(1)—O(1)D#3 (0.30690 nm), K(1)—
O(2)D#3 (0.28039 nm), K(1)—O (1) E#4 (0.28037 nm),
K(1)—O(1)F#5 (0.29853 nm) ] and one K—O coordination
bond [K(1)—O(4)A (0.28694 nm) ], forming a special struc-
ture with K" ion being coordination center. Atom O(4)A, O(1)E
and O(1)F are three ends of this badly distorted structure, ac-
cording to the selected bond lengths and bond angles (Table 2).
Each [ CH(NO, ), ] anion interacts with six adjacent K* ions
through the same coordination interactions simultaneously. Here-
in, the weak K-K interactions [ K(1)—K(1)#6 (0.44623 nm) |,
[K(1)—N(1)#3 (0.33370 nm) Jand [ K(1)—N(2) #1
(0.33411 nm) ] can also be found.

Table 2 Selected bond lengths and bond angles of {K[CH(NO,), ]},
bond length/ nm bond angle/(°) bond angle/(°)
K(1)—O(4)A 0.28694 (30) O(1)E#—K(1)—O(4)A 74.33(9) O(3)B#2—K(1)—0O(2)B#2 56.56(8)
K(1)—O(2)B# 0.28152 (30)  O(2)B#2—K(1)—O(4)A 103.15(9) O(3)B#2—K(1)—O(1)D#3 141.99(10)
K(1)—O(3)B#2 0.28007 (31)  O(2)D#3—K(1)—O(4)A 151.45(10) O(3)B#2—K(1)—O0(4)C#l 104.42(8)
K(1)—O(4)C#l 0.30856 (32) O(3)B#2—K(1)—O(4)A 68.63(10) O(3)B#I2—K(1)—N(1)#3 132.61(9)
K(1)—O(3)C#l 0.27978 (30)  O(3)C#1—K(1)—O(4)A 72.18(9) O(3)B#2—K(1)—N(2)# 84.44(8)
K(1)—O(1)D#3 0.30690 (32)  O(1)B#2—K(1)—O(4)C#l 141.07(10) O(3)C#1—K(1)—O(3)B# 63.60(10)
K(1)—O(2)D#3 0.28039 (30)  O(1)D#3—K(1)—O0(4)C#l 67.73(8) O(3)C#1—K(1)—O(2)D#3 136.01(11)
K(1)—O(1)E# 0.28073 (30)  O(1)D#3—K(1)—N(1)#3 21.99(7) O(3)C# —K(1)—O(1)E# 146.47(10)
K(1)—O(1)F#5 0.29853 (33)  O(1)D#3—K(1)—N(2)#1 89.36(7) O(3)C#1—K(1)—O(2)B# 116.13(9)
K(1)—K(1)#6 0.44623(18) O(1)E#—K(1)—O(2)B#2 70.28(9) O(3)C#1—K(1)—O(1)D#3 108.30(9)
K(1)—N(1)#3 0.33370 (33)  O(1)E#—K(1)—O(1)D#3 100.73(9) O(3)CH#1—K(1)—O(4)C#l 43.05(8)
K(1)—N(2)# 0.33411 (28)  O(1)E#M—K(1)—N(1)#3 86.38(8) O(3)C# —K(1)—N(1)#3 126.07(9)
0O(4)—N(2) 0.12596 (40)  O(1)E#—K(1)—N(2)# 151.49(8) O(3)C#—K(1)—N(2)#1 21.26(8)
N(2)—O0(3) 0.12522 (40)  O(2)B#2—K(1)—O(1)D#3 105.11(8) O(4)C# —K(1)—N(1)#3 88.71(8)
N(2)—C(1) 0.13640 (47)  O(2)B#2—K(1)—N(2)# 132.87(9) O(4)C#—K(1)—N(2)#1 22.15(7)
C(1)—N(1) 0.13715 (50)  O(2)B#2—K(1)—N(1)#3 84.66(8) O(4)E#—K(1)—O(4)C#1 147.54(9)
N(1)—O0(2) 0.12411 (43)  O(2)D#3—K(1)—O(1)E#4 77.29(9) N(2)—O(4)—K(1) 135.3(2)
N(1)—O(1) 0.12499 (41) O(2)D#3—K(1)—O(2)B#2 63.72(10) 0(3)—N(2)—0(4) 120.0(3)
O(2)D#3—K(1)—O(1)D#3 42.75(8) O(3)—N(2)—C(1) 124.4(3)
O(2)D#3—K(1)—0(4)C#l 106.66(9) 0(4)—N(2)—C(1) 115.6(3)
O(2)D#3—K(1)—N(1)#3 21.11(8) N(2)—C(1)—N(1) 122.8(3)
O(2)D#3—K(1)—N(2)# 125.07(9) 0(2)—N(1)—0(1) 119.8(3)
O(3)B#2—K(1)—O(2)D#3 115.41(9) 0(2)—N(1)—C(1) 124.3(3)
O(3)B#2—K(1)—O(1)E#4 102.42(9) O(1)—N(1)—C(1) 115.9(3)
Note: #1: x-1, y, z; #2: -x+2, -y+1, -z+2; #3: x-1,y, z-1; #4. x, y, z-1; #5: -x+1, -y+2, -z+2; #6: -x+1, -y+2, -z+1.
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No hydrogen bonding is observed in the crystal packing
(Fig.3), the crystal packing is highly ordered, which means
the infinite expansion of the unit involving central K* and K—O
bonds that connect the adjacent structures, exiting a regular

configuration.

3.2 Thermal Behavior
Typical DSC and TG-DTG curves (Fig.4 and Fig.5) indi-
cate that the thermal decomposition of {K[CH(NO,), ]}, can
be divided into two obvious exothermic decomposition stages.
The first stage is a slight decomposition process, occurring at
165-195 °C with a mass loss of about 54.8% , and the extrapo-
lated onset temperature and peak temperature at the heating
rate of 10.0 °C - minare 172.8 °C and 178.2 °C, respective-
ly. The second stage is an intense exothermic decomposition
process with a mass loss of about 23.2 % at the temperature
range of 195-240 °C, and the extrapolated onset temperature
and peak temperature at the heating rate of 10.0 °C - min™' are
224.9 and 225.6 °C, respectively. The final residue at 400 °C
is about 16.4% . Comparing { K[ CH(NO,), ]|, with some
similar potassium salts like K( NNMPA) ™’ K(AHDNE) "
and K(DNDZ)™* | it can be seen that their thermal behaviors
are all divided into two exothermic decomposition processes.
Correspondingly, the extrapolated onset temperatures and peak
temperatures of the first stages are 146.7 °C and 152.3 °C for
K(NNMPA), 179.8 °C and 181.9 °C for K(AHDNE), 220.4
and 222.7 °C for K(DNDZ) respectively, indicating that the
thermal stability of these four potassium salts is ordered as
K(DNDZ)>K(AHDNE) > K[ CH(NO,), 1} ,>K(NNMPA).

A multiple heating method was employed to obtain the
kinetic parameters [ the apparent activation energy(E) and pre-
exponential factor (A)]. The DSC data and results obtained
by Kissinger method and Ozawa method of the first exothermic
decomposition process for { KLCH(NO,), ]}, are listed in Ta-
ble 3777}, The apparent activation energy obtained by Kissin-
ger method agrees well with that by Ozawa method. The line-
ar correlation coefficients (r) are very close to 1. So, the re-
sults are credible. Moreover, the apparent activation energy is
lower, indicating that { K[ CH(NO, ), ]}

at high temperature.

easily decomposes

n

The self-accelerating decomposition temperature ( Tg,p; )
and critical temperature of thermal explosion ( T,) are two im-
portant parameters required to ensure safe storage and process
operations for energetic materials and then to evaluate the ther-
mal stability. T,,; and T, can be obtained by Eqs. (1) and

(2)97 20 respectively.

Topor =T = Tei_nB/‘_mB? i=1-4 (1)
TbZEo_M Ei)_4EoRTeo (2)

2R
where E, is the apparent activation energy obtained by Ozawa
method, k] - mol™; n and m are coefficients.

Tsaor and T, for {K[CH(NO,), ]}, are 161.0 °C and
162. 8 °C respectively, which are lower than these of
K(ANDNE) (162.5 °C and 171. 4 °C) "' and these of
K(DNDZ) (196.0°C and 208.6 °C) "™, but higher than that

of K(NNMPA) as 137.4 °C and 146.3 °C "',

100] Jexo 225.42°C

S <2} @
o (=] o
1 1 1

heat flow / mW-mg™"

N
(=)
1

220.30C]
178.07°C

o
1

50 100 150 200 250 300 350 400
temperature / °C
Fig.4 DSC curve of { K[ CH (NO, ), ]}, at a heating rate of

n

10 °C - min™'

100 6

80 ‘
- 179.15(C |, 20y -4 S
= 60 2
8 P
g 21856 r2 g
2 40 e
8 Z
g 23.20% S

_—/d_o o
20 — 1640%
0 T

T T T T T T 2
0 50 100 150 200 250 300 350 400
temperature / °C

Fig.5 TG/DTG curves of { K[ CH(NO, ), ]|
10 °C + min™'

at a heating rate of

n

Table 3 The parameters determined by DSC curves at different heating rates (3)

B/°C - min™' T./%C T,/ C Ec/k) - mol™ log(A/s™") r Eo /k) + mol™ ro
5.0 164.8 169.4
7.5 169.4 174.4
125.5 12.61 0.9996 126.4 0.9997
10.0 172.8 178.2
12.5 176.8 181.0

Note: Subscript K, data obtained by Kissinger method; subscript O, data obtained by Ozawa method.
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3.3 Sensitivity

The test result indicates that impact sensitivity of
[K[CH(NO,), ]}, is>15.7 J. {K[CH(NO,),]!
tively insensitive. The sensitivity is much lower than that of
K(AHDNE) (> 5 J), but slightly higher than that of
K(NNMPA) (>16.7 ).

is rela-

n n

4 Conclusions

Potassium dinitromethane { K[ CH(NO,), ]}, was synthe-

sized and structurally characterized. {K[CH(NO,), ]}, crystalli-
zes in triclinic system with space group P-1 containing two mole-
cules per unit cell. The thermal behavior of {K[CH(NO,), ]},
presents two exothermic decomposition processes. The self-ac-
celerating decomposition temperature and critical temperature
of thermal explosion of { K[CH(NO,), ]!, are 161.0 *Cand
{K[CH (NO,), ]}, exhibits lower
thermal stability than K(DNDZ) and K(AHDNE) , but higher
thermal stability than K(NNMPA). {K[CH(NO,), ]!

atively insensitive.

162.8 °C respectively.

is rel-

n
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