姚志华,王志军,李德战

半楔角对星锥状药型罩成型的影响

姚志华1,2,王志军1,李德战2 (1. 中北大学机电工程学院,山西太原 030051;2. 空军场务技术试验中心、山东 济宁 272000)

rials.org.cn 的人工作机构 摘 要:为研究半楔角对星锥状药型罩成型的影响,利用 LS-DYNA 有限元分析软件对不同半楔角(15°,25°,35°,45°,55°,67.5°) 的星锥状药型罩聚能装药结构形成射流的过程进行数值模拟,分析了其射流成型过程以及半楔角对星锥状药型罩的成型的影响。 研究表明: 星锥状药型罩的二次汇聚形成的射流速度比一次汇聚射流速度提高了 33% 以上; 半楔角选取 20°~35°较为合理; 楔角个数为3时,其射流侵彻性能较好。

关键词:爆炸力学;星锥状;射流;半楔角;数值模拟 中图分类号: TJ55; TJ410.3⁺3; O389 文献标识码: A

DOI: 10.3969/j.issn.1006-9941.2011.05.022

1 引言

在现代反恐战争中,城市巷战成为了一种主要的作 战模式。如何快速拆除墙体或铁门等障碍物,使十兵及 其装备顺利通过是影响战争胜负的关键因素之一。

目前,破除砖墙大多采用集团装药爆破的方式进 行,该方法存在炸药利用率低、炸药质量大、缺口形状 不容易控制等问题^[1]。采用聚能装药进行破墙则可 以解决上述问题。文献[2]也报道了用星锥状药型罩 作破墙用战斗部,相对于普通装药结构的优点在于产 生的轴向破坏作用更强。

文献[2]对星锥状药型罩侵彻混凝土进行了数值 模拟,对比了星锥状药型罩与传统的单锥罩侵彻混凝土 的结果。文献[3]就星锥状药型罩的成型和半锥角、药 型罩厚度、有无壳体对二次汇聚射流速度影响进行了研 究。而本文则利用 LS-DYNA 软件对星锥状药型罩进行 数值模拟,分析半楔角对星锥状药型罩成型的影响。

星锥状药型罩结构及几何模型 2

2.1 星锥状药型罩结构

星锥状药型罩是在楔形药型罩基础上,通过改变 装药结构而演化出的一种星锥状聚能装药结构,由若 干个楔形药型罩对齐排列且一端聚合而成。当装药起

收稿日期: 2010-10-12; 修回日期: 2011-03-28 作者简介:姚志华(1984-),男,助理工程师,在读硕士,主要从事弹箭 仿真技术研究。e-mail: 364124843@qq.com

爆后,爆轰作用使药型罩各楔形平面沿各自的中心轴 压垮,分别形成多股射流。同时,这几股射流沿公共轴 进行汇聚,完成二次碰撞,使药型罩在形成射流的同 时,再次使射流发生汇聚,结果沿公共轴线形成一股聚 能射流^[3]。

本文所述的星锥状药型罩的结构如图1所示,其 主要结构参数有6个,即锥罩大端半径 R、锥角2A、楔 角 2α 、药型罩厚 d、装药高 h 和锥罩高 L。本模拟所用 星锥状药型罩结构是由4个楔形药型罩对称排列且一 端聚合而成,如图1所示。

图1 星锥状药型罩结构简图

Fig. 1 Structure sketches of the new cone-shaped liner

2.2 几何模型的建立

根据图1的结构简图,建立如图2所示的战斗部几 何模型以及图 3 所示数值模拟所用的整体结构的几何 模型。模型的结构参数为:半锥角 $A = 20^{\circ}$,半楔角 $\alpha =$ 25°,药型罩壁厚 d = 2 mm,锥罩大端半径 R = 20 mm, 装药高 h = 115 mm 和锥罩高 L = 55 mm。

图2 战斗部结构几何模型

Fig. 2 The geometry model of the warhead

图3 整体结构几何模型

Fig. 3 The geometry model of the whole structure

表1 炸药参数^[4]

Table 1Parameters of explosion

3 数值模拟

3.1 计算模型

计算模型建立和有限元网格划分使用 Truegrid 前 处理软件。因为该结构为轴对称结构,所以模型采用 1/2 结构,如图 4 所示,以减少模型单元数目,节省计算 时间。为了简化计算,模型中不考虑壳体,仅考虑药型 罩、炸药和空气三部分,采用多物质 Euler 格式来模拟炸 药的爆轰和铜药型罩的压垮及射流的形成过程。网格 单元选用 solid164 八节点六面体单元,单元算法采用多 物质 Euler 算法。药型罩采用* MAT_JOHNSON_ COOK 材料模型和 GRUNEISEN 状态方程,炸药采用 * MAT_HIGH_ EXPLOSIVE_BURN 高 能 材 料 模 型 和 JWL 状态方程,空气材料采用流体模型为:*MAT_ NULL,状态方程为线性多项式:EOS_LINEAR_POLY-NOMIAL 来描述。药型罩、炸药、空气参数见文献[4]。

materials	$D/\mathrm{km} \cdot \mathrm{s}^{-1}$	$ ho_0/\mathrm{g}\cdot\mathrm{cm}^{-3}$	p _{C−J} /GPa	A/GPa	<i>B</i> /GPa	<i>R</i> ₁	<i>R</i> ₂	e_0	ω
RHT-901	7.980	1.717	29.5	524.23	7.678	4.2	1.1	8.5	0.34

Note: D, detonation velocity; ρ_0 , mass density; p_{C-1} , Chapman-Jougetpressure; A, B, R_1, R_2, ω , coefficient; e_0 , specific internal energy.

表2 Steinberg 本构模型计算参数^[4]

 Table 2
 Computational parameters of Steinberg constitutive equation

materials	G_0 / GPa	$b/s^2 \cdot kg^{-2/3}$	$b'/s^2 \cdot kg^{-2/3}$	h	f	$A/g \cdot mol^{-1}$	<i>T</i> _{m0} / K	$\sigma_{0}^{'}/{ m GPa}$	${oldsymbol{\gamma}}_0$
red copper	47.7	2.83	2.83	3.77E-4	0.001	63.55	1356	0.12	2.02

Note: G_0 , basic shearmodulus; b, h, f, γ_0 , coefficients; σ'_0, b' , materials constants; A, molemass; T, ambient temperature.

a. The finite-element model of the whole structure

b. The finite-element model of the warhead

图4 有限元模型

Fig. 4 Finite-element model

			~ (()	
		20	0,		
	1	1.6.	4		
主 2 次	与档开	山上省会制	Kr [4]		
τable 3	(换 d	ミリ 弁 参す nutationa	u Linarai	meters of air m	odel
		<i>C</i>	-1		<u>, suci</u>

$ ho_0/g\cdot \mathrm{cm}^{-3}$	$C/m \cdot s^{-1}$	$E_0/kJ \cdot cm^{-3}$	V_0
1. 25E – 3	394	0	1

Note: ρ , mass density; *C*, sound velocity; E_0 , initial internal energy; V_0 , initial relative volume.

3.2 数值模拟结果及分析

(1) 半楔角对星锥状药型罩成型的影响

为研究半楔角对星锥状药型罩成型的影响,分别 对15°、25°、35°、45°、55°、67.5°半楔角的星锥罩进行 数值模拟。数值模拟时,炸药采用单点起爆方式,起爆 点设置在炸药顶端中点。数值模拟所使用的单位制为:mm-ms-kg-GPa。

根据计算结果得到不同半楔角前 180 μs 不同时

刻形成的射流形状(图 5)和三倍装药口径处星锥罩形成射流的头尾速度(表 4)。

图 5 数值模拟结果 Fig.5 Results of the numerical simulation

表 4 三倍装药口径处星锥罩形成射流的头尾速度 **Table 4** Jet velocity of metallic jet and slug

half a wedge/(°)	15	25	35	45	55	67.5
velocity of metallic jet $/m \cdot s^{-1}$	1500	1208	1130	6500	5600	3820
velocity of slug $/m \cdot s^{-1}$	189	266	350	178	208	305

由图5计算结果可知:

同时可以看出, $\alpha < 45^{\circ}$ 和 $\alpha \ge 45^{\circ}$ 两种情况下,星 锥罩形成的射流半径和长度随半锥角增加而增加;而 且两者形成的射流形态也不同, $\alpha < 45^{\circ}$ 时的星锥罩罩 材的利用率明显高于 $\alpha \ge 45^{\circ}$ 的。

出现上述情况是由于半楔角的变化引起星锥罩的 结构的改变,从而使爆轰波驱动罩材的流动方向改变引 起的。爆轰波开始对药型罩压垮时, $\alpha < 45^{\circ}$ 的爆轰波驱 动星锥罩各楔形平面的罩材一边向各自的对称面运动, 一边向下运动;而 $\alpha \ge 45^{\circ}$ 的爆轰波则驱动星锥罩各楔 形平面的罩材一边向装药的对称轴运动一边向下运动。

半楔角对星锥罩形成射流速度影响也比较大。

由表 4 可知,α <45°时,形成射流速度明显要小于 α≥45°时形成的射流速度。这主要是由于两者的射流成 型机理不同。但两种情况的射流头部速度都随半楔角的 增加而减小,而尾部速度规律则与之相反。而当半楔角 α=15°由于初始射流速度过高,导致射流二次汇聚时射 流速度梯度过大,射流过早断裂,影响其侵彻性能。

综合考虑星锥型药型罩罩材利用率和形成射流的 形态和速度,选取半楔角选取20°~35°较为合理。

(2)相同半楔角的不同楔形角个数的星锥罩射流 速度对比

为研究相同半楔角的不同楔形角个数的星锥 状药型罩的射流速度对射流速度的影响。设计了结构 参数相同(半锥角 $A = 20^{\circ}$,半楔角 $\alpha = 25^{\circ}$,药型罩壁 厚 d = 2 mm,锥罩大端半径 R = 20 mm,装药高 h =115 mm,锥罩高L = 55 mm),只有楔形角个数不同的 三种结构对比。表5 是三倍口径处不同个数楔角的星 锥罩形成射流的头尾速度。

表 5 不同个数楔角的星锥罩形成射流的头尾速度 **Table 5** Jet velocity of different half a wedge

amount of wordso	velocity of metallic jet	velocity of slug		
amount of wedge	/ m • s ⁻¹	/m • s ⁻¹		
2	1335	203		
3	1293	240		
4	1208	266		

从表5可知,当其它参数相同时,减少楔角个数可 以增加射流的头部速度。这是因为随着楔角个数的减 少,相邻两个楔形罩之间的装药量增加,从而导致形成 初始射流的速度增加,进而使二次汇聚形成射流的速 度增加。所以,在设计时,当装药高度一定时,可以通 过减小楔角数量来提高射流速度。但减少楔角个数会 减少药型罩的质量,从而减少射流的质量。综合考虑 以上因素,楔角个数取3个比较合理。

(3)相同半楔角的不同厚度的星锥罩形成射流速度

同时仿真结果也表明,药型罩厚度对初始射流和 二次汇聚形成射流的速度影响较大,见表6。

表6 不同壁厚药型罩形成射流的速度

 Table 6
 Jet velocity of different liner thickness

<i>d</i> /mm	1.5	2	2.5	
$V_1 / m \cdot s^{-1}$	4537	4208	3676	
$V_2 / m \cdot s^{-1}$	6216	5594	4928	
V_2 / V_1	1.37	1.33	1.34	

Note: *d* is liner thickness, V_1 is the initial jet velocity, V_2 is the secondary jet velocity.

含能材料

从表6可以知道,形成初始射流和二次汇聚形成 线型聚能射流的速度都随药型罩壁厚的增加而减小。 而且通过二次汇聚形成的射流速度比一次汇聚射流速 度提高了33%以上。

4 结 论

(1) 星锥状药型罩的二次汇聚形成的射流速度比 一次汇聚射流速度提高了33%以上。

(2) 半楔角 α 选取 20°~35°较为合理。

(3) 在其他结构参数相同时,星锥型药型罩形成 的射流速度随楔角个数的增加而减小。当星锥状药型 罩楔角个数为3时,其侵彻性能较好。

参考文献:

[1] 朱建桥. 聚能装药穿墙弹参数设计与应用研究 [D]. 大连: 大连 理工大学,2010.

ZHU Jian-giao. Parametric designand applied researchon the shells used to penetrating the walls[D]. Dalian: Dalian University of Technology, 2010.

- [2] 范晨阳,王志军,吴国东. 星锥状药型罩形成射流侵彻混凝土的数 值模拟[J]. 弹箭与制导学报,2010,30:99-102. FAN Chen-yang, WANG Zhi-jun, WU Guo-dong. Numerical simulation on jet formation and projectile into concrete target of a new star shaped liner[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30: 99-102.
- [3] 王志军,吴国东. 一种新型星锥状药型罩形成射流的数值模拟 [J]. 兵工学报,2007,28:1397-1400.

WANG Zhi-jun, WU Guo-dong. Numerical simulation on jet formation of a new star shaped liner[J]. Acta Armamentarii, 2007, 28:1397-1400.

[4] 张会锁,赵捍东,黄延平,等. 起爆方式对聚能射流影响的数值仿 真研究[J]. 含能材料,2008,16(4):415-419. ZHANG Hui-suo, ZHAO Han-dong, HUANG Yan-ping, et al. Numerical simulation of effect of ignition ways on shaped charge jet[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao),2008,16(4):415-419.

- [5] 北京工业学院八系. 爆炸及其作用(下)[M]. 北京: 国防工业出 版社,1979:84-123.
- [6] 李裕春,时党勇,赵远. ANSYS 11.0/LS-DYNA 基础理论与工程 实践[M]. 北京:中国水利水电出版社,2008.

Effects of Star Shaped Liner of Different Half a Wedge on Jet Formation

YAO Zhi-hua^{1,2}, WANG Zhi-jun¹, LI De-zhan²

(1. School of Mechatronic Engineering, North University of China, Taiyuan 030051, China; 2. Airfeild Technology Test Center of Airforce, Jining 272000, China)

Abstract: In order to study the effects of the star-shaped liner of differently half wedges(15°,25°,35°,45°,55°,67.5°) on jet formation. the LS-DYNA software was used to perform numerical simulation on the process that a structure of the new star-shaped liner forms jet, analyzing the forming process and the effects on forming and jet velocity of the differently half wedges of star shaped liners. Results show that the velocity of second-gathering jet which the star shaped liner forms increases by 33%, compared with the initial jet. The half wedges are suitable for $20^{\circ} \sim 35^{\circ}$. The penetration performance of jet is better when the number of wedge is 3.

Key words: explosion mechanics; star cone-shaped; jet; half a wedge; numerical simulation

CLC number: TJ55; TJ410.3⁺3; O389 Document code: A

DOI: 10.3969/j.issn.1006-9941.2011.05.022