文章编号:1006-9941(2010)02-0121-07

2,6,8,12-四硝基-2,4,6,8,10,12-六氮杂异伍兹烷的合成及量子化学研究

李玉川^{1,2}, 祁 才², 孙成辉¹, 庞思平¹, 赵信岐¹

(1. 北京理工大学材料科学与工程学院,北京100081;2. 北京理工大学生命科学与技术学院,北京100081)

摘 要:以2,6,8,12-四乙酰基-2,4,6,8,10,12-六氮杂异伍兹烷(TAIW)为原料,经过三氟乙酸酐保护、硝化、脱保护等反应,制得了 2,6,8,12-四硝基-2,4,6,8,10,12-六氮杂异伍兹烷(TNH₂IW);用 SnCl₂分步还原六硝基六氮杂异伍兹烷(HNIW,CL-20)也可制得 TNH₂IW。在 DFT-B3LYP/6-31G*水平下求得了 TNH₂IW 的分子几何、电荷分布和热力学性质,计算了 TNH₂IW 的热容、熵等热力 学参数,给出了这些参数和温度之间的函数关系。在不破坏笼形结构和硝基的原则下通过构建等键反应求得 TNH₂IW 的生成热为 461 kJ·mol⁻¹。计算表明 TNH₂IW 的爆速为9.13 km·s⁻¹,爆压为 38.9 GPa,爆轰性能高于 TNT 和 RDX,与 HMX 相当。 **关键词:** 有机化学;四硝基六氮杂异伍兹烷(TNH₂IW);合成;密度泛函理论(DFT);爆轰性能

中图分类号: TJ55; O62

文献标识码:A

DOI: 10.3969/j.issn.1006-9941.2010.02.001

1 引 言

六硝基六氮杂异伍兹烷(HNIW, CL-20)和八硝 基立方烷等笼形化合物的能量除来自骨架碳原子的燃 烧外,其能量更多的则来自于笼形结构的张力^[1]。 HNIW 具有高能量输出(其超出现役能量水平最高的 炸药 HMX 14%)、高密度(其 ε 晶型密度可达 2.04 g·cm⁻³)、高爆速(9.5 km·s⁻¹)、由 HNIW 与 粘结剂组成的炸药或推进剂配方能显著提高比冲、燃 烧速度和起爆能等优点。自 1987 年 HNIW 问世以 来,其一直为世界各国含能材料研究者所青睐,有关 HNIW 衍生物及类似物的合成也一直是人们研究的 热点^[2-5]。

2,6,8,12-四硝基-2,4,6,8,10,12-六氮杂异伍兹 烷(TNH₂IW)保留了异伍兹烷的笼体结构,同时具有 两个仲胺,其合成方法研究和相关性能预测对于研究 异伍兹烷类化合物笼形结构的特点及进行进一步化学 修饰具有重要价值。2000 年 Wardle^[6]在其专利中称 TNH₂IW 可由 TAIW 直接硝化得到,但Anthony等^[7-8]

收稿日期: 2009-05-15;修回日期: 2009-10-12

基金项目:国家自然科学基金(No.20772011)及国家自然科学基金与中国工程物理研究院联合基金(No.10576002)资助项目

作者简介:李玉川(1974-)男,博士,研究方向为含能材料合成。

e-mail: yuchuanyh@ yahoo. com. cn

报道此方法无法重复。2005 年和 2007 年 Anthony 等报道了采用不同的路线可以合成出 TNH₂IW^[7,9], 进行了初步的表征和测试,但缺乏各种性能参数。本 试验通过不同方法制备出 TNH₂IW,对其各中间产物 进行了较详细的表征;用量子化学方法对 TNH₂IW 的 分子结构进行全优化,给出不同温度下的熵和热容,通 过构建等键反应,首次求得 TNH₂IW 生成热,并计算 了其自然电荷分布、能级分布、热力学性质和爆轰性能 (爆速和爆压)。

2 实验和计算方法

2.1 仪器和试剂

TA-60 型示差扫描量热仪(升温速率 10 ℃・min⁻¹), Varian Mercury-plus 400 型核磁共振仪(TMS 内标), Nicolet 公司 Magna-IR 7500 型傅立叶变换红外光谱 仪, WRS-1B 型数字熔点仪, Elementar Analysensysteme GmbH 公司 Vario EL 型元素分析仪, Micromass公司 ZAB-HS 型双聚焦高分辨有机质谱仪。 2,6,8,12-四乙酰基-2,4,6,8,10,12-六氮杂异伍兹烷 (TAIW)和 HNIW 为实验室自制,三氟乙酸酐、二氯甲 烷、氯化亚锡、发烟硝酸、发烟硫酸、无水醋酸钠、四氢 呋喃、乙醇均为国产分析纯。

- 2.2 合成方法
- 2.2.1 合成路线

合成路线见 Scheme 1。

通讯联系人: 孙成辉, e-mail: sunch@bit.edu.cn;

庞思平, e-mail: pangsp@ bit. edu. cn

2.2.2 2,6,8,12-四乙酰基-4,10-二三氟乙酰基-2,4, 6,8,10,12-六氮杂异伍兹烷(TA(TFA)₂IW)的 合成^[7,10]

在 50 mL 三口烧瓶中,加入 15 mL 三氟乙酸酐 (TFAH, 106 mmol),15 mL 氯仿或二氯甲烷,剧烈搅 拌下加入 6.73 g (20 mmol)精制 TAIW,在 40 ℃回 流 20 h,室温蒸干,得白色泡沫状固体,将此固体用 20 mL三氯甲烷或二氯甲烷溶解后于 40 ℃旋干,反复 3 次,得白色固体 15.6 g (a),然后 55 ℃真空干燥过夜, 得白色固体 10.7 g (b),经鉴定为 TA(TFA)₂IW,粗产 率 101%。m.p. >300 ℃;¹H NMR (DMSO- d_6 , a) δ : 2.15 ~2.19(s, 12.0H, 4COCH₃), 6.54 ~7.20 (m, 5.76H, 6CH), 10.37(br, 1.97H, TFA); IR (KBr) ν : 3041,1786,1728,1680,1417,1398,1356,1287, 1160,960,700 cm⁻¹。

2.2.3 2,6,8,12-四硝基-4,10-二三氟乙酰基-2,4,6, 8,10,12-六氮杂异伍兹烷(TN(TFA)₂IW)的 合成^[4,7,11]

在 100 mL 三口瓶中加 30 mL 95% 发烟硝酸,于 5~15 ℃下滴加 30 mL 30% 的发烟硫酸,降温至 0-5 ℃ 后,剧烈搅拌下加入 7.90 g(~15 mmol) TA(TFA)₂IW, 升温至 40~45 ℃反应 5 h,然后再升温至 60 ℃反应 2 h, 降至室温后,倒入约 500 mL 冰水中,过滤,用蒸馏水洗 涤至 pH≈7,真空干燥过夜,得白色粉状固体 7.30 g, 经鉴定为 TN(TFA)₂IW,收率 91%. m.p. 200.6 ℃ (dec.); ¹H NMR (DMSO- d_6) δ : 7.43 ~ 7.59 (m, 3.8H, 4CH), 8.12 (s, 2.0H, 2CH); MS (ESI): 540.7 [M+H]⁺。

2.2.4 TNH, IW 的合成(方法一)^[7,12]

在 25 mL 单口瓶中加 16 mL 无水乙醇,0.16 g 无 水醋酸钠,室温搅拌至完全溶解,然后加入 1.00 g

TN(TFA)₂IW,反应液立即变黄色,TN(TFA)₂IW 完 全溶解后约2 min 开始有沉淀生成,继续反应15 min, 过滤,用蒸馏水洗涤至滤液 pH≈7,真空干燥过夜,得 白色粉状固体0.35 g,经鉴定为 TNH₂IW,收率 61%, m.p. 193.2 ℃ (dec.); ¹H NMR (acetone- d_6) δ: 5.47(s, 2.18H, 2NH), 6.29(s, 4.21H, 4CH), 7.59(s, 2.0H, 2CH); ¹³C NMR, δ : 72.50, 72.99; MS (ESI): 347.1[M-H]⁻. Anal. calcd for C₆H₈N₁₀O₈: C 20. 70, H 2. 32, N 40. 23; found C 20. 54, H 2.41, N 40.09。

2.2.5 TNH₂IW 的合成(方法二)^[13,14]

在装有温度计的 50 mL 三口烧瓶中加入 1.00 g HNIW(2.28 mmol), 20 mL 四氢呋喃, 控制温度 为 20 ~ 25 ℃,分批加入共计 1.00 g SnCl₂ · 2H₂O (4.44 mmol),20 ℃搅拌反应 1 h,回收四氢呋喃,剩 余物用 60 mL 乙酸乙酯溶解, HCl 水溶液洗涤 (2 mol/L, 3 × 10 mL),水洗(3 × 10 mL),饱和食盐 水洗(3 × 10 mL),无水硫酸钠干燥,过滤,回收乙酸乙 酯,得到白色固体为 HNIW 和产物的混合物 0.85 g。 柱层析得到 2,4,6,8,10-和 2,4,6,8,12-五硝基-2, 4,6,8,10,12-六氮杂异伍兹烷(PNHIW)白色固体 0.47 g,产率 53%。

在装有温度计的 50 mL 三口烧瓶中加入 0.50 g PNHIW(1.27 mmol), 20 mL 四氢呋喃,控制温度为 20~25 ℃,分批加入共计 0.50 g SnCl₂·2H₂O (2.22 mmol),搅拌反应 2 h,回收四氢呋喃,剩余物 用 50 mL 乙酸乙酯溶解,水洗(3×10 mL),饱和食盐 水洗(3×10 mL),无水硫酸钠干燥,过滤,回收乙酸乙 酯,柱层析得到白色粉末 60 mg,经鉴定为 TNH₂IW, 收率 13%。

2.3 计算原理与方法

密度泛函理论(DFT)是研究小分子到中等尺寸分

子的结构、电子性质和光谱的有效方法^[13-14],尤其是其中的B3LYP方法^[15-16]包含电子相关校正,不仅能计算出可靠的几何和能量,且节省机时。许多研究已经表明^[17-20],DFT用于 CHON 高能量密度化合物如立方烷、异伍兹烷、金刚烷、四唑等衍生物的理论计算是行之有效的。本论文利用 Gaussian03 软件,选用6-31G*基组配合 DFT-B3LYP 方法对标题化合物进行几何全优化,求得势能面上极小值,振动分析无虚频,基于统计热力学求得 298~1000 K 的热力学参数和能量参数。

在不破坏异伍兹烷笼体的原则下,设计了如下等 键反应来求算标题化合物的生成热(Scheme 2)。

该反应在 298 K 时的反应热 ΔH_{298K} 可表示如下 $\Delta H_{298K} = \sum \Delta H_{f,P} - \sum \Delta H_{f,R}$ (1) 式中, $\sum \Delta H_{f,P}$ 和 $\sum \Delta H_{f,R}$ 分别是 298 K 下各产物和各 反应物生成热之和。由于化合物 1, 2, 3 的生成热是 可以测量的,因而只要按照式(2)计算出等键反应的 ΔH_{298K} ,则可以按照 Scheme 2 求标题化合物的生成热。 $\Delta H_{298K} = \Delta E_{298K} + \Delta (pV) = \Delta E_0 + \Delta E_{ZPE} + \Delta H_T + \Delta nRT$ (2) 式中, ΔE_0 和 ΔE_{ZPE} 分别是 0 K 时产物和反应物的总能 量之差和零点能之差; ΔH_T 是从 0 到 298 K 的温度校 正项; 因该反应 $\Delta n = 0$ 故 $\Delta nRT = 0$ 。

爆速和爆压的求算按照 Kamlet-Jacobs 方程进行^[21],该方程几乎适用于所有的 CHON 系高能量密度化合物。在 DFT-B3LYP/6-31G*计算标题化合物结构的基础上,采用 Monte-carlo 方法基于 0.001 e · bohr⁻³计算结果求得分子平均堆积,进而求得标题化合物密度。将该密度和等键反应求得的生成热用于 Kamlet-Jacobs 方程计算了 D 和 p。全部计算在 AMD athlon 4.0 GHz 微机上进行。

3 结果与讨论

3.1 合成方法

在 TA(TFA)₂IW(a)的¹H NMR 谱图中, δ = 10.37 存在两个三氟乙酸(TFA)的 H,即每个 TA(TFA)₂IW 分子可以和两个 TFA 分子较稳定结合,但在温度较 123

高、长时间干燥情况下,TA(TFA)₂IW 中的 TFA 分子 可以逐渐失去,但由于 TFA 与仲胺有较强的相互作 用,很难完全除去,如在 TA(TFA)₂IW(b)的 IR 谱图 中,3400 cm⁻¹附近没有明显的仲胺峰,但能观察到活 泼氢的存在,这说明可能有少量笼体分解或者进一步 说明 产 物 中 残 存 有 少 量 的 TFA,从 而 导 致 TA(TFA)₂IW的产率超过 100%。TA(TFA)₂IW 中残 留的少量 TFA 并不影响后继的硝化。

SnCl₂还原 HNIW 时,从 TLC 检测情况看,在 HNIW 剩余量较多而产物 PNHIW 达到一定程度时, PNHIW 即开始被还原(实验证实 HNIW 用 Pd/C 还 原后得到的纯品 2,4,6,8,10-五硝基-2,4,6,8,10, 12-六氮杂异伍兹烷再经 SnCl₂还原无法得到 TNH₂IW,因此,此混合物中的 2,4,6,8,12-五硝基-2,4,6,8,10,12-六氮杂异伍兹烷被还原为 TNH₂IW, 而 2,4,6,8,10-五硝基-2,4,6,8,10,12-六氮杂异伍 兹烷则被还原后很快分解),增加反应时间,HNIW 仍 无法完全被还原,加大 SnCl₂ 用量结果相同。因此无 法通过 SnCl₂ 直接还原 HNIW 得到 TNH₂IW,而只能 得到 HNIW 和 PNHIW 混合物,但实验发现除去混合 物中的 HNIW 后,PNHIW 虽仍为混合物,但继续用 SnCl₂处理后可以分离出来 TNH₂IW,但产率较低。 通过两种方法得到的¹H NMR 相同。

3.2 分子几何

分子几何是进行光谱分析的热力学计算的基础, 为节省时间及提高效率,首先采用由 mopac/MP3 对 标题化合物分子进行预优化,在此基础上由 DFT-B3LYP/6-31G*水平对其进行几何全优化,表1给出 了标题化合物的全优化几何参数。TNH,IW 呈 C, 对 称,由两个五元环和一个六元环构成,船式六元环形成 笼状底,两个五元环居六元环之上并以 C-C 键相连 (图 1)^[4,22-23]。从表 1 数据可见, TNH, IW 笼体分子 中 C-N 键长、C-H 键长均属于正常范围,但 C-N 键键长0.1436~0.1507 nm 比 HNIW 中 C-N 键键 长0.1434~0.1477 nm 稍长,NO, 基本在一个平面上, 键长、键角与 HNIW 及其它硝胺类化合物如 HMX 相类 似。C-C 键长 0.1573~0.1598 nm, 高于普通 C-C 键长(0.1530~0.1540 nm),这在高张力的笼型分子中 是常见的。N(13)-H(14)、N(15)-H(16)键键长均为 0.1017 nm,高于 N-H 标准键长,表明新生成两个仲 胺 H 比普通的 N—H 要稍活泼。TNH₂IW 分子中两个 五元环上的二面角 N(20)-C(3)-N(18)-C(1) 和N(17)-C(8)-N(19)-C(7)均为42.08°,比HNIW

表1 2,6,8,12-四硝基-2,4,6,8,10,12-六氮杂异伍兹烷优 化后的几何参数

Table 1Optimized geometry parameters of 2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane

bonds	length/nm	bonds	length/nm
C(1)-C(2)	0.1573	N(15)-H(16)	0.1017
C(1)-N(13)	0.1440	N(17)-N(30)	0.1426
C(1)-N(18)	0.1493	N(18)-N(24)	0.1382
C(2)-N(15)	0.1436	N(21)-O(22)	0.1231
C(2)-N(20)	0.1507	N(21)-O(23)	0.1226
C(3)-C(8)	0.1598	N(27)-O(28)	0.1223
C(3)-N(18)	0.1466	N(27)-O(29)	0.1220
C(3)-N(20)	0.1455		0,5
bonds	$angle/(\circ)$	bonds	angle/(°)
C(2)-C(1)-N(13)	110.3	C(3)-N(18)-N(24)	119.3
C(2)-C(1)-N(18)	100.7	N(19)-N(21)-O(23)	116.7
N(13)-C(1)-N(18)	115.6	N(20)-N(27)-O(29)	117.0
C(1)-C(2)-N(15)	109.8	N(18)-C(3)-N(20)	99.90
C(1)-C(2)-N(20)	104.8	C(3)-C(8)-N(17)	109.0
N(15)-C(2)-N(20)	112.2	N(17)-C(8)-N(19)	99.90
N(20)-N(27)-O(28)	115.7	C(8)-N(17)-C(9)	107.7
C(8)-C(3)-N(18)	113.1	C(9)-N(17)-N(30)	116.5
C(8)-C(3)-N(20)	109.0	C(1)-N(18)-N(24)	119.2
C(3)-C(8)-N(19)	113.1	N(19)-N(21)-O(22)	116.1
C(1)-N(13)-C(9)	113.7	O(22)-N(21)-O(23)	127.2
C(8)-N(17)-N(30)	116.0	O(28)-N(27)-O(29)	127.1
C(1)-N(18)-C(3)	109.6		
bonds	dihedral angle/(°)	bonds	dihedral angle/(°)
N(13)-C(1)-C(2)-N(15)	5) 1.96	N(20)-C(3)-C(8)-N(1	7) –112.63
N(13)-C(1)-C(2)-N(20	0) -118.76	C(8)-C(3)-N(18)-C(1)) -73.63
N(18)-C(1)-C(2)-H(5)) -112.58	C(8)-C(3)-N(18)-N(24	4) 69.06
N(18)-C(1)-C(2)-N(1	5) 124.54	N(20)-C(3)-N(18)-C(1) 42.08
N(18)-C(1)-C(2)-N(20	0) 3.83	N(20)-C(3)-N(18)-N(24) -175.23
C(2)-C(1)-N(13)-C(9)	55.08	C(8)-C(3)-N(20)-C(2) 80.69
N(18-)C(1)-N(13)-C(9	9) -58.22	C(8)-C(3)-N(20)-N(2	7) -146.75
C(2)-C(1)-N(18)-C(3) -28.50		N(18)-C(3)-N(20)-C(2)	2) -38.03
C(2)-C(1)-N(18)-N(24) -171.23		N(18)-C(3)-N(20)-N(27) 94.53
N(13)-C(1)-N(18)-C(3) 90.25		C(3)-C(8)-N(17)-C(9)) 80.69
N(13)-C(1)-N(18)-N(24) -52.49		C(8)-N(17)-N(30)-O(31) -158.29
C(1)-C(2)-N(15)-C(7) -57.03		C(8)-N(17)-N(30)-O(32) 25.61
N(20)-C(2)-N(15)-C(7) 59.08		C(9)-N(17)-N(30)-O(32) 154.02
C(1)-C(2)-N(20)-C(3)	21.70	C(1)-N(18)-N(24)-O(25) -23.50
C(1)-C(2)-N(20)-N(22)	7) -110.62	C(1)-N(18)-N(24)-O(26) 158.60
N(15)-C(2)-N(20)-C(2)	3) -97.41	C(3)-N(18)-N(24)-O(25) -162.63
N(15)-C(2)-N(20)-N	27) 130.27	C(3)-N(18)-N(24)-O(26) 19.47
N(18)-C(3)-C(8)-N(12	7) -2.51	C(2)-N(20)-N(27)-O(28) -29.88
N(18)-C(3)-C(8)-N(19	9) 107.62		

图1 TNH₂IW 的分子结构和原子编号

Fig. 1 Molecular structure and atom numbering of TNH_2IW

分子中对应二面角大,表明该两个五元环上的5个原 子并不处于同一平面且较 HNIW 更为扭曲; N(18)-C(1)-C(2)-N(20)和 N(19)-C(7)-C(9)-N(17)均 为3.83°,即相关四原子近似共平面,但比 HNIW 分子 中对应二面角大,表明其扭曲程度增大。由上述分析 可知 TNH₂IW 分子中部分键键长较 HNIW 有所增加, 分子扭曲程度增大,稳定性变差,说明硝基的吸电子效 应对异伍兹烷的笼体具有稳定作用,对笼体进行的相 应化学修饰要参考此特点。

3.3 热力学性质

表 2 列出了在 DFT-B3LYP/6-31G^{*}水平下求得 的标题化合物在 298 ~1000 K 温度范围内的标准热 力学函数(3)和(4)式。从表 2 中看出,随着温度的升 高,热力学参数热容($C_{p,m}^{s}$),熵(S_{m}^{s})值都随着温度的 升高而增加,这是因为当温度较低时,分子的平动和转 动对热力学函数的贡献较大;但是在较高温度下,分 子的振动对热力学函数的贡献较大,从而导致热力学 函数值的增加, $C_{p,m}$ 和 S_{m}^{s} 随温度升高增加值逐渐变 小。对这些数据进行多项式拟合,获得它们在 298 ~ 1000 K 范围内随温度(*T*)变化的函数关系。

表 2 2,6,8,12-四硝基-2,4,6,8,10,12-六氮杂异伍兹烷 (TNH₂IW)的热力学性质

Table 2 Thermodynamic parameters of 2,6,8,12-tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (TNH₂IW)

T/K	$C_{\mathrm{p,m}}^{\mathrm{s}}/\mathrm{J}\cdot\mathrm{mol}^{-1}\cdot\mathrm{K}^{-1}$	$S_{\rm m}^{\rm s}$ / J • mol ⁻¹ • K ⁻¹
298	294.35	559.03
400	393.91	672.01
500	464.20	767.78
600	518.61	857.44
700	560.61	940.50
800	593.56	1017.60
900	619.89	1089.27
1000	641.22	1155.54

 $C_{p,m}^{s} = -15.83400 + 1.24345 T - 0.00059 T^{2}$ (3) $S_{m}^{s} = 209.80110 + 1.28220 T - 0.00034 T^{2}$ (4)

相关系数分别为 0.99747, 0.99990。这些方程 和热力学数据有利于深入研究 TNH₂IW 的其它物理、 化学和爆炸性质。

3.4 生成热

生成热是高能量密度化合物的基本性质,无论是推 进剂的比冲,还是火炸药的爆速、爆压,生成热都在其计 算公式中占有相当大的权重。由于此类化合物的不稳 定性及新化合物性质的不确定性,实验测定生成热通常 有难度或者有危险,标题化合物则因其稳定性较差和感 度较高测量困难。同时,类似化合物的实测值和理论计 算值比较吻合,因此借助理论方法进行计算可以有效解 决测量困难问题。已有的计算方法如基团加和法^[24]、 参数化的半经验 MO^[25-28]法等都缺乏足够的精度,而 等键反应则因为体系中各种类型键的数目相等^[29],反 应物和产物电子环境相近,因而电子相关能造成的误 差可以相互抵消,使得计算生成热误差大大降低。

表 3 列出了在 DFT-B3LYP/6-31G^{*}水平下计算 所得的各化合物的总能量(E_0)、零点能(E_{zpt})、温度校 正项(H_T),也列出了三种参考物质的实验或计算生成 热。经等键反应依据上述公式计算求得标题化合物生 成热 461 kJ·mol⁻¹,而在同样条件下 TNT、RDX 和 HMX 的生成热均为负值(参见表 6)。对同一类型的 笼形硝胺类化合物而言,其生成热受硝基的多少以及 硝基相对位置和分子对称性影响较大,从表 3 可以看 出,每个 TNH₂IW 分子仅比 HNIW 分子少两个硝基, 但其生成热数值比 HNIW 的生成热数值下降幅度较 小。一方面是因为硝基的减少,生成热降低,又由图 1 和表 1 可以看出 TNH₂IW 分子中笼体比 HNIW 的扭 曲程度增大,从而引起其分子内能有所增加,这也是 TNH₂IW 比 HNIW 生成热降低较少的重要原因。

表 3 相关物质的总能量(E_0)、零点能(E_{ZPE})、温度校正值 (H_T)和实验生成热或者计算生成热($\Delta_f H_{298}^0$)

Table 3 Total energy (E_0) , zero point energy (E_{ZPE}) , values of thermal correction (H_T) , and experimental heats of formation or calculated heats of formation $(\Delta_t H_{298}^0)$

compounds	E0 E	EZPE	H _T	$\Delta_f H_{298}^0$	
	/a.u.	/kJ ∙ mol ⁻'	/kJ ∙ mol [–] '	/kJ ∙ mol ⁻¹	
TNH ₂ IW	-1382.25	575.90	45.79	461	
HNIW	-1791.18	581.28	60.45	596	
NH_3	-40.52	118.71	7.52	-74.4	
NH_2NO_2	-245.01	131.82	11.38	-74.3	

3.5 自然电荷分析

分子中各原子的自然电荷分布与分子化学活性的 关系非常密切,原子所带的负电荷值越大,亲核性越 强。表4列出了在B3LYP/6-31G*水平下对优化构型 后的TNH₂IW分子中原子的自然电荷分布的计算结 果。由表4可以看出,TNH₂IW分子中所有C原子和 H原子均带正电荷;硝基中N均带正电荷,且两个仲 胺H带的正电荷数值远大于其它6个-CH上H带的 电荷;负电荷集中在TNH₂IW分子中O上和笼体的N 上,笼体N上所带电荷差值较大。

表 4 B3LYP/6-31G*方法计算所得的 TNH₂IW 构象中原子的 自然电荷分布

Table 4The atomic nature charges of the stable conformer ofTNH, IW at B3LYP/6-31G*a. u.

atom	charge	atom	charge	atom	charge
C(1)	0.0801	H(14)	0.4300	N(27)	0.6599
C(2)	0.0852	N(13)	-0.6754	O(22)	-0.4111
C(3)	0.0796	N(17)	-0.3580	O(23)	-0.3864
H(4)	0.2905	N(18)	-0.3292	O(28)	-0.3809
H(5)	0.3023	N(21)	0.6574	O(29)	-0.3688
H(6)	0.3247				

3.6 能级分布

表 5 给出了 TNH₂IW 和 HNIW 分子基态的最高 占据轨道能量(HOMO)、最低空轨道能量(LUMO) 和前线轨道能级差(ΔE)。从表中 HOMO 和 ΔE 可以 看出,TNH₂IW 分子的 HOMO 较高,ΔE 较小,从电子 跃迁的角度看,电子容易从 HOMO 跃迁到 LUMO 而 较不稳定;而 HNIW 分子的 HOMO 较低且 ΔE 较大, 从而较稳定,即 TNH,IW 和 HNIW 的分子稳定性为: TNH,IW < HNIW。通常分子的稳定性除了与电子跃 迁有关外,还与原子核的振动等有关,并应综合理论和 具体实验来判断,而从本文的计算和具体实验测定数 据比较来看,影响 TNH, IW 分子的相对稳定性的主要 因素可能为其能级分布,其它因素的影响可能比较小, 因而可以直接从电子跃迁的角度来判断 TNH₂IW 的 相对稳定性。表5的数据及其它研究表明^[22,30],此类 化合物分子稳定性符合最易跃迁原理,即可能直接从 电子跃迁的角度来解释其分子稳定性问题。

3.7 爆轰性能

爆速和爆压是含能材料重要的性能指标,按照 K-J 方程求算爆速和爆压需要化合物的密度(ρ)和生成热 (HOF),而密度本身同时也是衡量含能材料优劣的主 要参数之一。对标题化合物的 DFT-B3LYP/6-31G^{*} 理论水平进行几何优化计算获得稳定构型,基于 0.001 e · bohr⁻³等电子密度面所包围的体积空间,用 Monte-Carlo 方法求算摩尔体积。经过多次运算求平均 值,得标题化合物平均摩尔体积为177.02 cm³ · mol⁻¹, 据此求得密度 ρ = 1.97 g · cm⁻³。结合等键反应所得 生成热数据,由 K-J 方程计算了标题化合物爆速 D 和 爆压 p,并计算了几种常见高能化合物的爆速和爆压 列于表 6。

表 5 TNH, IW 和 HNIW 的基态分子的能级

Table 5Energy levels of ground states of TNH_2IW and HNIW

			N a.u.
molecules	НОМО	LUMO	ΔE
TNH ₂ IW	-0.2919	-0.0886	0.2034
HNIW(CL-20)	-0.3219	-0.1078	0.2141

表6 TNH₂IW 和一些常见高能化合物的爆轰性能

Table 6 Detonation performance of TNH2IW and traditionalhigh energy density materials

compounds	$\Delta_f H_{298}^0$ /kJ · mol ⁻¹	ρ /g・cm ⁻³	D /km • s ⁻¹	р /GPa
TNH ₂ IW	461	1.97	9.13	38.9
TNT	-52	(1.65)	(7.02)	(20.7)
RDX	-192	1.80	8.75	34.7
НМХ	-250	1.90	9.09	39.0
HNIW(CL-20)	596	2.04	9.50	42.0

Note: The value in the bracket is the experimental data of this compound at the maximum charge density^[4,11,22].

4 结 论

研究了异伍兹烷笼体上二级胺的保护和脱保护方法,标题化合物的合成为异伍兹烷类笼形化合物中二级胺的合成与修饰提供了借鉴,并为其它笼体化合物的相关研究提供了方法与基础,二级胺的存在使其又具有继续进行化学修饰的可能性;硝基对异伍兹烷笼体影响较大,进一步修饰可考虑引入强吸电子基团以增加笼体稳定性。计算结果表明标题化合物对称性较好,生成热较高,具有高密度、高爆速、高爆压的特点,高于 TNT 和 RDX,与 HMX 相当。

参考文献:

 Huynh M H V, Hiskey M A, Hartline E L, et al. Polyazido high-nitrogen compounds: Hydrazo and azo-1,3,5-triazine[J].
 Angew Chem Int Ed, 2004, 43: 4924 – 4928.

- [2] Niesen A T, Nissan R A, Vanderah D J. Polyazapolycyclics by condension of aldehydes with amine. 2. Formation of 2,4,6,8, 10,12-hexabenzyl-2,4,6,8,10,12-hexabenzyl-2,4,6,8,10,12-hexabenzyletracyclo [5.5.0. 0^{5,9}.0^{3,11}] dodecanes from glyoxal and benzylamines[J]. *J Org Chem*, 1990, 55: 1459 1466.
- [3] Herve G, Jacob G, Gallo R. Preparation and structure of novel hexaazaisowurtzitane cages[J]. Chem Eur J, 2006, 12: 3339-3344.
- [4] 任务正, 王泽山, 等.火炸药理论与实践[M].北京:中国北方 化学工业总公司编辑出版社, 2001.
- [5] PANG Si-ping, YU Yong-zhong, ZHAO Xin-qi. A novel synthetic route to hexanitrohexaazaisowurtzitane [J]. Propel Explos Pyrotech, 2005, 30: 442 – 444.
- 6 Wardle R B, Hinshaw J C. Method for making new polycyclic polyamides as precursors for energetic polycyclic polynitramine oxidizers: USP 6147209[P]. 2000.
- [7] Anthony J B, Alistair MacCuish, Peter G, et al. The use of trifluoroacetyl as an N- and O-protecting group during the synthesis of energetic compounds containing nitramine and/or nitrate ester groups [J]. Propel Explos Pyrotech, 2007, 32: 20-31.
- [8] Hamilton R S, Sanderson A J, Wardle R B, et al. Studies of the synthesis and crystallization of CL-20 [C] // Proceedings of 31st International Conference of ICT, 2000.
- [9] Anthony J. B. Studies on the hydrodenitration by tin(II) chloride of polynitrohexaazaisowurtzitanes [C] // Proceedings of the VIII seminar "New trends in rearch of energetic materials", Pardubice Czech Republic, 2005: 2464 – 2471.
- [10] Lin X D, Hilary D, Nuss J M. Utilization of Fukuyama's sulfonamide protecting group for the synthesis of N-substituted α-amino acids and derivatives [J]. *Tetrahedron Lett*, 2000, 41: 3309 – 3313.
- [11] 张熙和,云主惠. 爆炸化学[M]. 北京:国防工业出版社,1989.
 ZHANG Xi-he, YUN Zhu-hui. Explosive chemistry [M].
 Beijing: National Defence Industry Press, 1989.
- [12] Boger D L, Yohannes D. Total synthesis of K 13 [J]. J Org Chem, 1989, 54: 2498 - 2502.
- [13] Seminario J M, Politzer P. Modern density functional theory: a tool for chemistry[M]. Elsevier, Amsterdam, 1995.
- [14] Parr R G, Yang W. Density-functional theory of atoms and molecules[M]. New York: Oxford University Press, 1989.
- [15] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. *Phys Rev B*, 1988, 37: 785 – 789.
- [16] Becke A D. Density-functional thermochemistry. II. the effect of the perdew-wang generalized-gradient correlation correction[J].
 J. Chem. Phys, 1992, 97: 9173 -9177.
- [17] 陈天娜, 汤业朋, 宋画杰. 氧化呋咱二聚体分子间相互作用的理论计算[J]. 含能材料, 2007, 15(6): 641-645.
 CHEN Tian-na, TANG Ye-peng, SONG Hua-jie. Theoretical study on intermolecular interaction of furoxan dimers [J]. *Chinese Journal of Energetic Materials* (*HangnengCailiao*), 2007, 15(6): 641-645.
- [18] 李正莉,王煊军,张有智. UDMH 分子结构的计算研究[J]. 含能 材料,2007,15(4):363-366.
 LI Zheng-li, WANG Xuan-jun, ZHANG You-zhi. Calculation of the Molecular Structure of UDMH [J]. *Chinese Journal of Energetic Materials* (*HangnengCailiao*),2007,15(4):363-366.

含能材料

- [19] 李小童, 庞思平, 于永忠, 等. 3,6-二叠氮基-1,2,4,5-四嗪的 合成及理论研究[J]. 化学学报, 2007, 65: 971-976. LI Xiao-tong, PANG Si-ping, YU Yong-zhong, et al. Synthesis and theoretical studies of 3, 6-diazido -1, 2, 4, 5-tetrazine [J]. Acta Chin Sinica, 2007, 65: 971-976.
- [20] 邱丽美, 侯俊先, 韦伟, 等. 笼状碳氢化合物五环[5.4.0.0^{2,6}. 0^{3,10}.0^{5,9}]十一烷的密度泛函理论研究[J]. 化学学报, 2008, 66:745-750. QIU Li-mei. HOU Jun-xian, WEI W, et al. Density functional theory investigation on a caged compound- pentacyclo[5.4.0. $0^{2,6}.0^{3,10}.0^{5,9}\,]$ undecane [J]. Acta Chin Sinica, 2008, 66: 745 - 750.
- [21] Kamlet M J, Jacobs S J. Chemistry of detonations . I. A simple method for calculating detonation properties of C-H-N-O explosives[J]. J. Chem. Phys, 1968, 48: 23-35.
- [22] 肖鹤鸣. 高能化合物的结构和性质 [M]. 北京: 国防工业出版 社.2004. XIAO He-ming. Structures and properties of energetic compounds [M]. Beijing: Beijing National Defence Industry Press. 2004.
- [23] 赵信歧, 施倪承. ε-六硝基六氮杂异伍兹烷的晶体结构[J]. 科学 通报,1995,40(23):2158-2160.
- [24] Dixon F A, Smart B E. Numerical simulation of molecular

systems. The determination of thermochemical properties [J]. Chem Eng Commun, 1990, 98: 173 - 185.

- [25] Bingham R C, Dewar M J S, Lo D H. Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method[J]. J Am Chem Soc, 1975, 97: 1285 - 1293.
- [26] Dewar M J S, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters [J]. J Am Chem Soc, 1977, 99: 4899-4907.
- [27] Dewar M J S, Zoebisch E G, Healy E F, et al. Development and use of quantum mechanical molecular models, 76, AM1 · A new general purpose quantum mechanical molecular model[J]. J Am Chem Soc, 1985, 107: 3902 - 3909.
- [28] Stewart J J P. Optimization of parameters for semiempirical methods I. Method[J]. J Comput Chem, 1989, 10: 209 – 220.
- [29] Hahre W J, Radom L, Schleyer P V R, et al. Ab initio Molecular orbital theory [M]. John Wiley and sons, inc. 1986.
- [30] 杜泉, 王玲, 谌晓洪, 等. VO_x(x=1~5) 团簇结构与稳定性的 DFT研究[J]. 化学学报, 2008, 66: 23-30. DU Quan, WANG Ling, ZHAN Xiao-hong, et al. Study of the structures and stabilities of the VO_x ($x = 1 \sim 5$) molecules by density functional theory [J]. Acta Chim Sinica, 2008, 66: 23 - 30.

Synthesis and Quantum Chemical Study on 2,6,8,12-Tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane

LI Yu-chuan^{1,2}, QI Cai², SUN Cheng-hui¹, PANG Si-ping¹, ZHAO Xin-qi¹

(1. School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. School of Life Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

Abstract: 2,6,8,12-Tetranitro-2,4,6,8,10,12-hexaazaisowurtzitane (TNH₂IW) was synthesized from 2,6,8,12-tetraacetyl-2,4,6,8,10,12-hexaazaisowurtzitane (TAIW) by protection, nitration and deprotection. TNH, IW could also been obtained by reduction of hexanitrohexaazaisowurtzitane (HNIW, CL-20) with SnCl,. The molecular geometries, electric structures, and thermodynamic properties of TNH, IW were calculated using the density functional theory (DFT) method at the B3LYP/6-31G* level. The thermodynamic parameters including heat capacities and entropies were calculated, and also the polynomial functions between thermodynamic parameters and temperature were determined. The accurate heat of formation 461 kJ \cdot mol⁻¹ of TNH, IW in gas phase was obtained via designed isodesmic reaction in which the cage and the nitro group have been kept. The data obtained from the present study show a satisfactory detonation performance, with detonation velocity of 9.13 km \cdot s⁻¹ and detonation pressure of 38.9 GPa, both of which are higher than those of TNT and RDX, not worse than those of HMX counterparts.

Key words: organic chemistry; tetranitrohexaazaisowurtzitane; synthesis; density functional theory (DFT); detonation performwww.energe 会能林科 ance

CLC number: TJ55; O62

Document code: A

DOI: 10.3969/j.issn.1006-9941.2010.02.001