文章编号:1006-9941(2008)03-0333-04

介孔分子筛负载 SO₃ H 基区域选择性催化硝化邻二甲苯

奚立民

(台州职业技术学院 生物与化学工程系,浙江 台州 318000)

摘要:采用直接合成法制备出由 MCM-41 介孔分子筛负载 SO₃H 的催化剂,探讨了催化剂表面的酸中心组成,并考 察了不同工艺条件下邻二甲苯区域选择性硝化的催化性能。用硫酸钡重量法、透射电镜(TEM)和 N₂ 吸附-脱附表征 了 MCM-41-SO₃H 的结构。结果表明,MCM-41-SO₃H 保持了 MCM-41 的介孔结构,BET 表面积高达 560 m² · g⁻¹,表面 含有质 子 酸 中 心;得到最宜的工艺条件:催化剂焙烧温度 290 ℃,反应温度 65 ℃, $m_{%_{-}P_{*}}/m_{@(R_{M})} = 27$, $n_{n_{n}}/n_{\%_{-}P_{*}} = 2.5$,反应时间 3 h,邻二甲苯转化率为 92.4%, 3,4-二甲基硝基苯的含量达到 83.3%。

关键词:物理化学; MCM-41 分子筛; 磺酸; 3,4-二甲基硝基苯; 区域选择性催化; 硝化 中图分类号: TJ55; 0643 文献标识码: A

1 引 言

3,4-二甲基硝基苯是高能材料、维生素 B₂、除草 剂二甲戊乐灵和高档有机染料的重要中间体^[1]。目 前工业制备多数采用硝硫混酸硝化邻二甲苯的方法, 但是该法活性低、选择性差,3,4-二甲基硝基苯只占总 硝化产物的40%~45%,其余主要为2,3-二甲基硝基 苯,而且会产生较多废酸和废水,污染严重,也容易生 成副产物硝基酚,有爆炸危险^[2]。近年来,催化活性 和选择性较高,并且再生后能重复使用的绿色芳烃选 择性硝化催化剂不断开发^[3-5]。

负载于具有规整介孔结构分子筛上的固体酸催化 剂可以很好地调节其酸性和孔径范围,增加其比表面 积和热稳定性,提高催化活性^[6-7]。目前,表面含磺酸 基的介孔分子筛对酯化反应已有报道^[8-9],但是用于 硝化催化的研究较少。本实验采用直接合成法制备了 负载磺酸基的介孔分子筛,由于在介孔分子筛表面引 进大量磺酸基,因此,自制的催化剂具有固体超强酸性 质,作为邻二甲苯的区域选择性硝化反应的催化剂,与 传统的混酸硝化工艺相比,显示出较高的催化活性和 选择性,又可有效地消除污染。

2 实验部分 🥟

2.1 催化剂的合成

MCM-41-SO₃H的合成参照文献[10],以十六烷基 三甲基铵(C₁₆TMA)和十二烷基三甲基铵(C₁₂TMA)为 模板剂,正硅酸甲酯(TMOS)为主要硅源,3-硫醇丙基-

收稿日期: 2007-12-17;修回日期: 2008-01-25

三甲基氧硅(MPTS)和甲基-三甲基氧硅(MTMS)为部 分硅源。按比例混合以上模板剂和硅源,倒入装有甲 醇和去离子水的聚丙烯烧杯中,氢氧化四甲基铵 (TMAOH)溶液也加入其中。得到的胶体在20℃下搅 拌16h,蒸去所有甲醇,然后倒入内衬聚四氟乙烯的不 锈钢反应釜中,于95℃下不搅拌加热48h。再经抽 滤、洗涤,烘干后,置于马福炉中在290℃下活化5h, 即得所需的MCM-41-SO₃H催化剂。

2.2 催化剂的表征

在 TEM-2000EX 透射电镜下 MCM-41-SO₃H 的显 微照片见图 1。MCM-41-SO₃H 于 220 °C 真空活化 5 h, 然后在液氮温度下用 ST-03 比表面仪测得 N₂ 吸附平 衡等温线(见图 2)。图 3 是根据吸附平衡等温线,利 用密度函数理论(DFT)得出的孔径分布图。

2.3 催化剂中硫含量与酸强度的测定

采用硫酸钡重量法测定硫含量,即m_{Zn0}/m_{无术Na2C03} 为 4/1 的混合熔剂熔融固体酸,经水浸取后以沉淀法 测定硫含量(以 SO₃ 的质量分数计);采用指示剂蒸汽 法^[11]来测定酸强度。

如果将测得的硫含量换算成催化剂样品的酸中心数(以 SO₃ 的 mmol·g⁻¹计)^[12],则在不同焙烧温度下,MCM-41-SO₃H 的酸中心数和酸强度均可测得。

2.4 催化活性实验

在装有冷凝器和电热套控温的 250 mL 三口烧瓶中加入一定量催化剂和 0.5 mol 邻二甲苯,升温至一定温度,缓慢滴加发烟硝酸,边滴加边搅拌,控制搅拌速率为 600 r·min⁻¹。反应结束趁热用布氏漏斗过滤,将滤液慢 慢倒入 200 mL 的冰水中,边倒边剧烈搅拌,移入分液漏斗中分出有机相,水相用乙醚萃取,合并入有机相,调节有机相 pH =9,再用无水 CaCl, 干燥,过滤,常压蒸馏后得产物。

基金项目:浙江省科技计划重大项目(2006C11026)

作者简介:奚立民(1957 -),男,教授,从事有机催化的研究与教学。 e-mail: xilm@ tzvtc. com

图 2 MCM-41-SO₃H 对 N₂ 的吸附平衡等温线

Fig. 2 Adsorption isotherm curves of N, on MCM-41-SO₃H

2.5 产物检验

产物以3,4-二甲基硝基苯作内标物用 SP-6800A 气相色谱仪(FID 检测器、OV-17 不锈钢色谱柱)分析。 根据分析结果计算邻二甲苯的转化率和3,4-二甲基 硝基苯的质量分数。

用 Nicolet 5MX 型傅里叶红外光谱仪(KBr 压片) 对 3,4-二甲基硝基苯进行了红外光谱分析,其红外光 谱见图 4。

3,4-二甲基硝基苯的主要吸收峰(cm⁻¹)为: 3094,3031($v_{=C-H}$);2949,2921,2858(v_{CH_3});1547 ($v_{as NO_2}$);1353($v_{s NO_2}$);901(v_{C-N});1609,1502 ($v_{c=C}$);870,796($\gamma_{=C-H}$)(苯环1,2,4 三取代);

3 结果与讨论

3.1 结构研究

3.1.1 TEM 分析与孔径分布

由图 1 和图 3 可看出,在 3.0 ~ 7.9 nm 孔径范围 内,催化剂仍保持高度有序的一维六角介孔结构,孔径 的最可几分布为 6.3 nm。袁兴东等^[13]通过 XRD、FT-IR、 TEM 和 N_2 吸附平衡等研究方法,也发现直接合成法可 以得到孔径分布狭窄、均匀的含磺酸基介孔分子筛,磺 酸基键合在分子筛表面,指向孔道,具有质子酸中心。

3.1.2 N₂ 吸附分析

由图 2 可看出,其吸附类型为W型。根据吸附等温 线,求得催化剂的比表面积为 560 m² · g⁻¹,传统的 SO₄⁻²/M_xO_y型固体酸比表面积一般在 200 m² · g⁻¹之内, 而 SO₃H 负载在介孔分子筛上后达到了560 m² · g⁻¹,这 显然是充当载体的 MCM-41 提供了更多的可附着表面。

3.1.3 酸中心数和酸强度分析

在不同焙烧温度下, MCM-41-SO₃H 的酸中心数和 酸强度测定结果列于表 1。

表1表明,当焙烧温度从200℃增加到350℃时, 催化剂酸强度 H₀在-13.59~-13.71的狭小范围内 波动,均属固体超强酸,可见焙烧温度对酸强度无显著 影响;但焙烧温度对酸中心数的影响却较大,这可能 与 MCM-41-SO₃H 体系在焙烧温度升高过程中样品的 失硫量有关。因为在焙烧过程中一方面被吸附的 SO₃H 与分子筛形成酸中心;另一方面当焙烧温度过 高时,这种超强酸将分解放出 SO₃,降低了酸中心数。 因此,在290℃焙烧5 h的催化剂活性最好,过高或过 低都不利于催化剂表面活性结构的形成。在完成催化 硝化反应后,对催化剂进行加水处理,并在290℃下焙 烧5h,发现催化活性增加。通过硫含量测定,并经分析是由于质子酸中心数的增加在起作用。

表 1 不同焙烧温度下 MCM-41-SO₃H 的酸中心数和酸强度 Table 1 Numbers of acid sites and acid strength of

MCM-41-SO₃H under different calcination temperatures

calcination temperature∕℃	200	230	260	290	320	350
numbers of acid sites /mmol • g ⁻¹	0.771	1.191	1.685	1.977	1.424	0.530
acid strength/ H_0	< -13.66	< -13.59	< -13.64	< -13.67	< -13.71	< -13.62
					N.	

3.2 催化剂的性能

3.2.1 工艺条件对催化性能的影响

首先选用 L₁₆(4⁵)正交表进行试验,考察催化剂用 量、原料比、反应温度、反应时间四个因素对邻二甲苯 转化率的影响,影响因素的各水平,如表2 所示。

表 2 工艺条件正交试验结果

Table 2 Results of orthogonal design on technology conditions

No.	$m_{\rm o-xylene}/m_{\rm catalys}$	$n_{\rm nitric \ acid}/n_{\rm o-xylene}$	<i>T∕</i> ℃	t∕h	α/%
1	20	1.5	55	1	65.3
2	20	2.0	60	2	73.4
3	20	2.5	65	3	83.8
4	20	3.0	70	4	76.5
5	25	1.5	60	3	77.1
6	25	2.0	55	4	75.2
7	25	2.5	70	1	9.4
8	25	3.0	65	2	87.0
9	30	1.5	65	4	81.9
10	30	2.0	70	3	72.7
11	30	2.5	55	2	77.9
12	30	3.0	60	1	78.3
13	35	1.5	70	2	70.75
14	35	2.0	65	1	75.6
15	35	2.5	60	40	73.8
16	35	3.0	55	03	72.2
Ι	299.0	295.0	290.6	298.6	
I	318.7	296.9	302.6	309.0	
Ш	310.8	314.9	328.3	305.8	
IV	292.3	314.0	299.3	307.4	
R	26.4	19.9	37.7	10.4	

依据实验结果所得 R 值大小可知,对邻二甲苯转化 率影响最大的是反应温度,最小的是反应时间。采用同 样的正交试验方法,得知对 3,4-二甲基硝基苯的质量分 数影响最大的是催化剂用量,最小的是反应温度。

然后从催化性能、生产能力、能源利用等方面考虑 各个因素对反应收率和目标产物质量分数的综合影响, 并通过进一步单因素实验,得到最宜的工艺条件:当 $m_{%=\#*}/m_{@engletan} = 27, n_{@mbletan}/n_{\%=\#*} = 2.5, 在 65 ℃下反应 3 h 时, 邻二甲苯的区域选择性催化硝化效果最佳。$

3.2.2 催化剂再生对性能的影响

为考察催化剂再生性能,在最宜工艺条件下使用催 化剂后,都在290℃重新焙烧5h经再生后使用,然后测 定每次再生使用时邻二甲苯的转化率和3,4-二甲基硝基 苯的质量分数,其中前六次再生使用的测定结果见表3。

表 3 催化剂再生试验结果 Table 3 Results of catalyst regeneration test

regeneration frequency	conversion of o-xylene/%	mass percentage of 3,4-dimethylnitrobenzene/%
1	92.4	83.3
2	91.7	82.5
3	90.8	81.6
4	89.5	80.6
5	87.9	79.7
6	86.1	78.8

表3表明,催化剂在第六次再生使用时转化率和 质量分数分别降到86.1%和78.8%,总下降率仅为 6.8%和5.4%。可见,催化剂的再生性能较好。

3.2.3 焙烧温度对催化剂性能的影响

在最宜工艺条件下,考察不同温度焙烧催化剂对 硝化反应的影响,结果见图 5。

Fig. 5 Effect of calcination temperature on catalyst performance

图 5 结果表明,随着焙烧温度升高,3,4-二甲基硝 基苯在产物中的质量分数基本不变,但对邻二甲苯的 转化率产生显著影响。由于对催化剂结构分析已得 知:焙烧温度对酸强度无显著影响而对酸中心数影响 明显。因此,推测可能是3,4-二甲基硝基苯在产物中 的质量分数主要决定于催化剂的酸强度,邻二甲苯的 转化率主要决定于催化剂的酸中心数。本催化剂的合 适焙烧温度是290 ℃,该结论与表1测得的不同焙烧 温度下催化剂样品的酸中心数的结果完全一致。

4 结 论

(1) 采用直接合成法制得了 MCM-41 负载 SO₃H 的固体酸催化剂 MCM-41-SO₃H。介孔结构的 MCM-41 作载体为固体酸提供了更多的比表面。

(2) 290 ℃焙烧5h所制得的催化剂酸强度H₀ <
 -13.67,属于固体超强酸,对邻二甲苯硝化反应具有较高的区域选择性和催化活性。

(3) 290 ℃焙烧5h所制得的催化剂对合成3,4-二
甲基硝基苯的催化活性和区域选择性最好。通过试验寻找出最佳的合成工艺条件:反应温度65 ℃,反应时间3h,m_{%二甲苯}/m_{催化剂} = 27,n_{硝酸}/n_{%二甲苯} = 2.5,%二甲苯的转化率达92.4%,3,4-二甲基硝基苯的比例达83.3%。

参考文献:

- [1] 奚立民,于红艳. MCM-48 负载 SO/ZrO₂ 定位催化硝化合成 3,4-二甲基硝基苯[J]. 化工进展,2006,25(12): 1419-1422.
 XI Li-min,YU Hong-yan. Synthesis of 3,4-dimethylnitrobenzene by regioselective nitration with SO/ZrO₂ supported on MCM-48 catalyst [J]. *Chemical Industry and Engineering Progress*,2006,25(12): 1419-1422.
- [2] 高山,李忠民,尹永波,等. 催化定位硝化合成3,4-二甲基硝基苯
 [J]. 染料与染色,2003,40(4):231-238.
 GAO Shan,LI Zhong-min,YIN Yong-bo, et al. Regio-selective preparation for 3,4-dimethylnitrobenzene by catalytic nitration[J]. Dyestuffs and Coloration,2003,40(4):231-238.
- [3] Yang H, Lu R, Zhao J Z, et al. Sulfated binary oxide solid superacids
 [J]. Materials Chemistry and Physics, 2003, 80: 68 72.
- [4] Sohn J R, Seo D H. Preparation of new solid superacid catalyst, zirconium sulfate supported on γ-alumina and activity for acid catalysis
 [J]. Catalysis Today, 2003, 87(4): 219 - 226.
- [5] Yadav G D, Thathagar M B. Esterification of maleic acid with ethanol over cation exchange resincatalysts [J]. Reactive & Functional

Polymers, 2002, 52: 99 - 110.

- [6] Vartuli J C, Malek A, Roth W J, et al. The sorption properties of as-synthesized and calcined MCM-41 and MCM-48 [J]. *Microporous* and Mesoporous Materials, 2001, 44 – 45: 691–695.
- [7] Clark J H, Elings S, Wilson K. Catalysis for green chemistry: Ultrahigh loaded mesoporous solid acid [1]. Surface Chemistry and Catalysis, 2000, 3 (6): 399 - 404.
- [8] 袁兴东,沈健,李国辉,等.表面含磺酸基的介孔分子筛催化剂
 SBA-15-SO₃H的制备及其催化性能[J].高等学校化学学报,2002,23(12):2332-2335.
 YUAN Xing-dong, SHEN Jian, LI Guo-hui, et al. Preparation of highly

active esterification catalyst SBA-15 mesoporous silica functionalized with sulfonic acid group[J]. Chemical Journal of Chinese University, 2002,23(12): 2332-2335.

- [9] Diaz I, Marquez-Alvarez C, Mohino F, et al. Combined alkyl and sulfonic acid functionaliaztion of MCM-41-type silica part 2. esterification of glycerol with fatty acid [J]. Journal of Catalysis, 2000, 193 (2): 295 - 302.
- [10] Diaz I, Marquez-Alvarez C, Mohino F, et al. Combined alkyl and sulfonic acid functionaliaztion of MCM-41-type silica part 1. synthesis and characterization [J]. Journal of Catalysis, 2000, 193(2): 283 – 294.
- [11] 李青燕,沈雁君,沈清华,等. 指示剂蒸汽法测定固体超强酸酸强度[J]. 石油化工,2005,34(1):75-77.
 LI Qing-yan,SHEN Yan-jun,SHEN Qing-hua, et al. Steam method of determining acid strength of solid superacids [J]. Petrochemical Technology,2005,34(1):75-77.
- [12] Clark J H, Elings S, Wilson K. Catalysis for jgreen chemistry: ultrahigh loaded mesoporous solid acids [J]. Surface Chemistry and Catalysis, 2000, 3(6): 399 - 404.
- [13] 袁兴东,沈健,李国辉,等. 表面含磺酸基的介孔分子筛SBA-15-SO₃H的直接合成[J]. 催化学报,2003,24(2):666-667.
 YUAN Xing-dong, SHEN Jian, LI Guo-hui, et al. Direct synthesis of SBA-15 mesoporous silica functionalized with sulfonic acid groups[J]. *Chinese Journal of Catalysis*,2003,24(2):666-667.

Nitration of o-Xylene by Regioselective Catalysis with SO₃H Group Supported on Esoporous Molecular Sieve

XI Li-min

(Department of Biological and Chemical Engineering, Taizhou Technical College, Taizhou 318000, China)

Abstract: Catalyst of SO₃H group supported on mesoporous MCM-41 was prepared by direct-synthesis method. The composition of acid sites on catalyst surface was discussed, and the catalytic performance of o-xylene regioselective nitration was investigated under various technology conditions. The structure of MCM-41-SO₃H was characterized by the gravimetry of BaSO₄, transmission electronic microscopy (TEM) and N₂ adsorption/desorption. Results show that mesoporous structure of MCM-41 is maintained in the MCM-41-SO₃H system, there are Bronsted acid sites on catalyst surface with high BET surface area of 560 m² · g⁻¹. The optimum conditions of technology are as follows: calcination temperature of catalyst is 290 °C, the reaction is 65 °C for 3 h with $m_{o-xylene}/m_{catalyst}$ being 27 and $n_{nitrie acid}/n_{o-xylene}$ being 2. 5 to get o-xylene conversion of 92. 4%, mass percentage of 3,4-dimethylnitrobenzene reaching up to 83.3%.

Key words: physical chemistry; MCM-41 molecular sieve; sulfonic acid; 3,4-dimethylnitrobenzene; regioselective catalysis; nitration