文章编号: 1006-9941(2007)03-0269-04

Washburn 薄层毛细渗透法测定 ϵ 晶型 CL-20 的表面能及其分量

杜美娜,罗运军,李国平

(北京理工大学材料科学与工程学院,北京100081)

摘要:采用 Washburn 薄层毛细渗透技术测定了 ε -CL-20 粉体的接触角和表面能分量。发现基于不同探针液体的接触角获得的 ε -CL-20 粉体的表面能成分彼此一致。 ε -CL-20 的总表面能为 42.65 mJ·m⁻²,与理论计算结果 41.28 mJ·m⁻²基本一致。其中非极性分量为 40.61 mJ·m⁻²,极性分量为 2.042 mJ·m⁻²。而且在极性分量中碱 性分量为 13.02 mJ·m⁻²,酸性分量仅为 0.3204 mJ·m⁻²。结果表明, ε 晶型 CL-20 表面能中,非极性分量占主要 部分,且 ε -CL-20 两性偏碱。

关键词:物理化学; ε-CL-20; Washburn 毛细渗透法;表面能及其分量
 中图分类号: TJ55; 0647
 文献标识码: A

1 引 言

提高能量是火炸药发展的永恒主题,也是先进武器 装备对火炸药的重要需求。火炸药中,固体填料的存 在,使它们成为一种两相结构的复合材料,两相界面之 间的相互作用对火炸药的力学性能有重要影响。在目 前的技术条件下,提高能量的主要技术途径包括:应用 新型高能量密度化合物,提高配方中高能固体的含量 等,这些技术途径都将引起火炸药的力学性能改变。因 此,对火炸药的界面性质进行表征,研究火炸药增强增 韧的方法是非常必要的,具有重要的科学意义,它将为 高能高强度火炸药的研究奠定坚实的理论基础。

近年来薄层毛细渗透技术测定粉体表面的接触角 和固体表面能的成分受到广泛关注。视测定条件的不 同,接触角可以被区分为 Young 接触角(静态平衡接 触角)和动态接触角(非平衡接触角)。动态接触角又 可进一步分为动态前进角和动态后退角,两者的差异 称为接触角滞后。薄层毛细渗透技术所获接触角,称 为表观接触角,并非 Young 接触角^[1]。近来崔正刚等 人针对具有次级微孔的多孔性薄板,提出了一个新的 毛细管模型,并建立了新的毛细渗透方程,即在经典的 Washburn 方程中引入曲折度参数 C来定量校正毛细 凝聚效应^[2]。本文依此建立了薄层毛细渗透技术测 定 ε -CL-20 表面能的方法。

收稿日期: 2006-06-27; 修回日期: 2006-10-04

基金项目:国家重大基础研究项目资助(51340010201)

作者简介:杜美娜(1981-),女,博士,主要从事火炸药表界面性能研究。e-mail; yjluo@ bit. edu. cn

2 实验部分

2.1 实验原理

薄层毛细渗透技术的理论基础是 Washburn 方程^[3],研究证明,液体流入毛细管取代气体或另一种液体符合 Washburn 方程,液体在薄板上的渗透同样遵循 Washburn 方程,可以用有效半径 R。替代毛细管半径 r,即

$$x^{2} = \frac{R_{p}r_{1}\cos\theta t}{2C\eta} \tag{1}$$

式中,t为时间,s; x 为液体前缘前进的距离,cm; R_p 为薄板的有效半径,cm,下标 p 表示预接触; r_1 为液体 的表面张力,mN·m⁻¹,下标 l 表示液体; η 为液体的 黏度, Pa·s; θ 为接触角,(°); C 为曲折度参数。

为求 R_p ,通常用低表面张力的挥发性烷烃作渗透 液,并在渗透前让薄板与其蒸气预接触,以形成双重膜 (duplex film),确保 $\theta = 0^\circ$ 。然而对具有次级微孔的 粉体,预接触过程中存在毛细凝聚效应,即导致渗透速 度大大加快的情况。文献[2]在 Washburn 方程中引 入曲折度参数 C 来校正毛细凝聚效应。C 值可通过薄 板对渗透液蒸气的吸附量求取:

$$C = \frac{1 - V_{ad}/V_{t}}{1 - V_{p}/V_{t}}$$
(2)

式中, V_{t} 和 V_{p} 分别为薄板的总空隙体积和次级微孔的体积。 V_{ad} 为预接触过程中渗透液蒸气的吸附量(以预接触温度下的渗透液体积计, $V_{ad} \leq V_{p}$),下标 ad 表示预接触。如果 V_{p} 与 V_{t} 之比小于5%,则 V_{p} 相对于 V_{t} 可忽略不计,粉体不具有次级微孔,其毛细渗透适用经典 Washburn 方程^[3,4],即C=1。将薄板放入密闭容器中与液体蒸气预接触。称得预接触前后板的质量,计

算吸附量,得 V_{μ} 。根据预接触前和渗透实验后板的质量,计算板的总空隙体积 V_{ι} 。对易挥发性液体(如正 庚烷、正辛烷),称量时在板表面覆盖一块载玻片以防 止液体快速蒸发。然后用探针液体作渗透液,预接触 与不预接触时,得到的接触角分别为 θ_r 和 θ_a ,其中下 角标 r和 a 分别表示预接触、不预接触。C 值根据实 际吸附量 V_{at} 求取。最后取 θ_r 和 θ_a 的平均值作为 θ :

$$\cos\theta = (\cos\theta_r + \cos\theta_s)/2 \tag{3}$$

知道 θ 后应用公式(4)和(5)可以求得表面能分量。

对固-液界面,由表面张力的表达式和 Young 方程^[5]可得:

$$\frac{(1 + \cos\theta)r_1^{\mathrm{T}}}{2} = \sqrt{r_{\mathrm{s}}^{LW}r_1^{LW}} + \sqrt{r_{\mathrm{s}}^{*}r_1^{-}} + \sqrt{r_{\mathrm{s}}^{*}r_1^{+}} \quad (4)$$

式中,下标 s 和 l 分别指固体和液体。如果液体表面 张力只有非极性部分 r₁^{LW},则式(4)简化为:

$$\frac{(1 + \cos\theta)r_1^{LW}}{2} = \sqrt{r_s^{LW}r_1^{LW}}$$
(5)

一旦知道接触角 θ ,就能获得固体表面张力的非极性成分 r_s^{LW} ,进而如果知道两个表面张力含极性成分的液体的接触角,就能获得固体表面张力的极性成分 r_s^{+} 和 r_s^{-} 。对于粉末,接触角通过毛细渗透技术测定。 1-溴萘和二碘甲烷的表面张力仅含非极性成分,它们是测定 r_s^{LW} 的探针液体,而乙二醇和甲酰胺的表面张力含有极性成分,是测定 r_s^{-} 、 r_s^{+} 和 r_s^{AB} 的探针液体。

2.2 实验装置和薄板的制备

N.

实验装置自制^[2](见图1)。用一块30 cm×20 cm 有机玻璃作台基,3 个螺钉调节水平。用一个聚四氟 乙烯盒作渗透液容器,上端用一块聚四氟乙烯板覆盖, 随时可以移开添加液体。用一个带有厘米刻度尺的有 机玻璃罩与有机玻璃台基组成一个小室。小室内放置 一个玻璃支座,实验时将待测薄板置于该支座上,使其 与引导液体的脱脂棉完全接触。

薄板的制备:用聚四氟乙烯薄板加工 80 mm × 26 mm × 5 mm 的小槽,可将 25 mm × 75 mm 载玻片放置在小槽内。准确称取一定量固体粉末于烧杯中,加

人分散介质(非溶剂,例如去离子水),搅拌5h,配成 质量分数为5%的悬浮液。吸量管吸取4mL浮液铺 展于干净的25mm×75mm载玻片上,载玻片放置在 聚四氟乙烯制的80mm×26mm×5mm的小槽内,可 有效定量,最大限度地保证所铺制的薄板规格相同。 室温下自然干燥至水份完全挥发,水浴烘箱60℃干燥 24h,储于干燥器中备用。

图 1 Washburn 毛细渗透实验装置图

1一聚四氟乙烯板,2、3一聚四氟乙烯盒,4一支座,5一测薄板, 6一高度可调的螺钉,7一脱脂棉,8一水平台基

Fig. 1 The set-up of the Washburn wicking experiment

1-polytetrafluoroethylene sheet,

2,3—polytetrafluoroethylene case,

4-support, 5-plate, 6-tunable screw,

7-absorbent cotton, 8-horizontal base

2.3 其它仪器和药品

秒表;载玻片;正庚烷、正辛烷、1-溴萘、二碘甲 烷、乙二醇和甲酰胺,均为分析纯。表1列出了探针液 体的物理性质数据^[5,6]。

2.4 渗透量和毛细渗透曲线的测定

首先用饱和正庚烷作为渗透液,预接触形成双层 膜,确保接触角 $\theta = 0^{\circ}$ 。称得预接触前后板的质量,可 以计算得到吸附量。根据预接触前和渗透实验后板的 质量,计算板的总空隙体积 V_i 。将薄板放在支座上, 推进至与脱脂棉充分接触,同时启动记秒表计时,盖上 玻璃罩,记录爬行距离 x 和时间 t,根据公式(1)做 x²~t图,由其斜率可以求出各个薄板的有效半径 R_o 。

NNXXXX							
		Table 1 The physical properties of the liquids					
probes	r_1 /mN · m ⁻¹	r_1^{LW} /mN · m ⁻¹	r_1^{AB} /mN · m ⁻¹	r_1^+ /mN · m ⁻¹	r_1^- /mN · m ⁻¹	η ∕mPa•s	ρ /g · cm ⁻³
n-heptane	20.30	20.30	0	0	0	0.3900	0.6840
1-bromonaphthalene	44.19	44.19	0	0	0	4.520	1.488
diiodomethane	50.80	50.80	0	0	0	2.760	3.320
ethylene glycol	48.30	29.30	19.00	1.920	47.00	17.40	1.116
formamide	58.20	39.00	19.00	3.500	25.50	3.340	1.134

3 实验结果与讨论

3.1 液体在粉体表面的接触角

整个实验在室温下进行。预接触实验表明, *ε*-CL-20 薄板对正庚烷蒸气的吸附量很小,次级微孔体积 V。与 V 之比小于 5%,故 V_{p} 相对于 V_{t} 可忽略不计。因此 ε -CL-20 不具有次级微孔,其毛细渗透适用经典 Washburn 方程。 图2给出了各种探针液体空白板的毛细渗透曲线。从图 2可以看出,渗透速度从大到小依次为:甲酰胺、1-溴萘、 二碘甲烷和乙二醇。从公式(1)可知,渗透速度是由探针 液体的黏度、探针液体的表面张力、探针液体与固体粉末 的接触角以及薄板的仪器常数共同决定的。薄板的仪器 常数差别不大,每块板的 R_b由正庚烷求得(见表 2)。表 2 同时列出了各种探针液体预接触和不预接触时所得接 触角的余弦值,分别为 $\cos\theta_r$ 和 $\cos\theta_a$,两者平均值 $\cos\theta$ 为 该探针液体与固体粉末的接触角余弦值。甲酰胺的表面 张力最大,而黏度居中,所以渗透速度最快。1-溴萘相对 于甲酰胺而言,表面张力减小而且黏度增大,所以渗透速 度比甲酰胺慢。二碘甲烷相对于1-溴萘而言,表面张力 稍大,黏度稍小,但是接触角却显著增大,综合各个因素 使得二碘甲烷的渗透速度比 1-溴萘慢。对于乙二醇而 言,其黏度明显大于其它探针液体,所以渗透速度最慢。

图3所示为甲酰胺预接触和不预接触时的渗透曲 线。结果发现,预接触后薄板的渗透速度比不预接触快, 从而预接触测得的接触角余弦值大,对应的接触角小。 这是由于预接触过程在固体表面形成一个双层膜,从而 导致预接触后渗透液在双层膜上渗透铺展更加容易,所 以渗透过程进行比较快。由渗透曲线计算得到的接触角 列入表2。表2表明室温条件下, ε -CL-20表面探针液体 的接触角0°< θ <90°。可见探针液体和 ε -CL-20粉末有 不同程度的浸润。接触角越小,浸润越好^[7,8]。在这四种 测试液中,浸润最好的是1-溴萘,最差的是甲酰胺。

图 2 不同探针液体对 ε 晶型 CL-20 粉体的渗透曲线 Fig. 2 The distance squared for ε-CL-20 plates versus the time for different liquids

probes	precontact		no-precontact		0	0/(0)
	$R_{\rm p}/\mu{\rm m}$	$\cos\theta_{a}$	$R_{\rm p}/\mu m$	$\cos\theta_{\rm r}$	coso	0/()
1-bromonaphthalene	1.544	0.9606	1.496	0.9826	0.9716	13.69
diiodomethane	1.228	0.8433	0.9599	0.9387	0.8910	27.01
ethylene glycol	0.9599	0.6975	1.230	0.7569	0.7272	43.37
formamide	1.702	0.5912 🔪 C	1.606	0.6054	0.5983	53.28

表 2 薄板的仪器常数以及接触角的余弦值 Table 2 The constants of the equipment and the cosine of the contact angles

Note: R_{v} in first line is the constant of the equipment from precontact with heptane, and R_{v} in second line is the constant from no-precontact with heptane.

and precontacted with the saturated vapor of formamide

3.2 固体表面能及其分量

根据不同探针液体在 ε -CL-20 粉体表面上的接触 角,可以求得 ε -CL-20 粉体表面能的分量。1-溴萘和 二碘甲烷的表面张力较大且仅含有非极性成分,可能 显示非零接触角,因而选为求取表面能非极性成分的 探针液体,其测定结果分别为40.07,41.15 mJ·m⁻², 取其平均值作为 ε -CL-20 粉体表面能非极性成分的测 定结果,即 r_{s}^{IW} = 40.61 mJ·m⁻²。乙二醇和甲酰胺的 表面张力含有极性成分,用于 ε -CL-20 粉体表面能极 性成分的测定。其测试结果为 r_{s}^{AB} = 2.040 mJ·m⁻², r_{s}^{*} = 0.3200 mJ·m⁻², r_{s}^{-} = 13.02 mJ·m⁻²。所以 ε -CL-20粉体的总表面能 r_{s}^{T} = 42.65 mJ·m⁻²。 从 1-溴萘和二碘甲烷获得的表面能非极性成分 r^w 基本一致,偏差小于 2.8%。结果表明,ε-CL-20 表 面张力中非极性成分占绝大多数,两性偏碱。

3.3 ε-CL-20 表面能的理论计算

克分子等张比容是一种理论估算表面张力的有用 手段,它是一种可加量。假若已知基团对 *P*_s和 *V* 的贡 献,则可以从下式得到*r*_s^[9]:

$$r_{\rm s}^{\rm T} = \left(\frac{P_{\rm s}}{V}\right)^4 = \left(\frac{\rho P_{\rm s}}{M}\right)$$

式中, P_s 是等张比容,由 Sugden 引入,他给出了一张原 子贡献常用表。后来 Mumford 与 Philips 和 Quayle 对原 子和基团的贡献值稍加了修正和改进^[9]。 V 为克分子 体积,M 为分量, ρ 为密度。 $M_{e-CL-20} = 438.2 \text{ g} \cdot \text{mol}^{-1}$, $\rho_{e-CL-20} = 2.040 \text{ g} \cdot \text{cm}^{-3}$ 。根据各基团 P_s 贡献值,计算得 到 $r_s^r = 41.28 \text{ mJ} \cdot \text{m}^{-2}$ 。与薄层层析实验结果基本一致。

4 结 论

(1)建立了 Washburn 薄层毛细渗透技术测定

 金 晶型CL-20 粉末的表面能及其分量的方法。该方法
 相对其它的方法重复性好,成本低,可操作性强。

(2)通过薄层毛细渗透技术测定了 ε 晶型 CL-20 的表面能及其各个分量的值: ε 晶型 CL-20 的总表面 能为 42.65 mJ · m⁻²,与理论计算结果 41.28 mJ · m⁻² 基本一致。其中非极性分量为 40.61 mJ · m⁻²,极性 分量为 2.042 mJ · m⁻²。而且在极性分量中碱性分量 为 13.02 mJ · m⁻²,酸性分量仅为 0.3204 mJ · m⁻²。 结果表明 ε 晶型 CL-20 表面能主要是非极性分量,极 性分量仅占很小的比例,并且两性偏碱。这对选取有 效的键合剂,提高力学性能,实现界面增强、增韧和体系增容有指导意义。

参考文献:

- [1] Lucyna Holysz, Emil Chibowski. Surface free energy components of α-alumina from thin-layer wicking [J]. Langmuir, 1992, 8(2) : 717 721.
- [2] 崔正刚, Binks B P, Clint J H. 薄层毛细渗透技术测定多孔性固体 颗粒的表面能力成分[J]. 日用化学工业,2004,38(4):207-210.

CUI Zheng-gang, Binks B P, Clint J H. Determination of contact angle and surface free energy components of the small particles by thin layer wicking technique [J]. *Daily Chemical Industry*, 2004,38(4): 207-210.

- [3] Emil Chibowski, Lucyna Holysz. Use of the Washburn equation for surface free energy determination [J]. Langmuir, 1992, 8(2): 710 -716.
- [4] Costanzo P M, Wu W, Giese R F, et al. Comparison between direct contact angle measurements and thin layer wicking on synthetic monosized cuboids hematite particles [J]. Langmuir, 1995, (11): 1827 – 1830.
- [5] Van Oss Carel J. Interfacial Forces in Aqueous Media [M]. New York: Marcel Dekker, 1994.
- [6] Li Z, Giese R F, van Oss C J, et al. The surface thermodynamic properties of talc treated with octadecy lamine [J]. Colloid and Interface Sci, 1993, 156: 279 - 284.
- [7] Chen J D. Experiments on a spreading drop and its contact angle on a solid [J]. Colloid and Interface Sci, 1988, 122(1): 60-72.
- [8] D Li et al. Contact angles on hydrophobic solid surfaces and their interpretation [J]. Journal of Colloid Science, 1992, 148(1).
- [9] D W Van Krevelen. Properties of Polymers-Their Estimation and Correlation with Chemical Structure [M]. Elsevier Scientific Publishing Company, 1981.

Determination of Surface Free Energy Components of ε -CL-20 by Thin-Layer Wicking Technique

DU Mei-na, LUO Yun-jun, LI Guo-ping

(School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract: The solid surface free energy components of ε -CL-20 were determined by the Washburn equation with the thin-layer wicking technique. The results show that the surface free energy components of ε -CL-20 from different liquids are in good agreement with each other. The total surface free energy $r_s^{\rm T}$ of ε -CL-20 is 42.65 mJ \cdot m⁻², which accords with the theoretic calculation result 41.28 mJ \cdot m⁻². The other determined values are dispersive component $r_s^{LW} = 40.61$ mJ \cdot m⁻², polar component $r_s^{AB} =$ 2.042 mJ \cdot m⁻², electron acceptor component $r_s^* = 0.32$ mJ \cdot m⁻² and electron donor component $r_s^- = 13.02$ mJ \cdot m⁻². The results also show that the apolar component is the main part in the surface free energy and ε -CL-20 is a bipolar solid, which is more basic than acid.

Key words: physical chemistry; *e*-CL-20; Washburn wicking technique; surface free energy component