文章编号: 1006-9941(2006)06-0429-07

六元氮杂环取代四嗪化合物的密度泛函理论研究

周 阳1,龙新平1,舒远杰1,王 欣2,田安民2

(1. 中国工程物理研究院化工材料研究所,四川 绵阳 621900; 2. 四川大学化学系,四川 成都 610064)

摘要: 运用密度泛函理论,在 B3LYP/6-311G(d,p)水平上,对 22 种六元氮杂环化合物进行理论计算。几何全优化结果表明,所有化合物均无虚频,位于势能面上的局部极小点,可稳定结构。不同的六元氮杂环对四嗪环的几何构型和电子结构有一定的影响。基于自然键轨道理论,分析了稳定结构的电荷分布、成键情况以及它们的 π 键轨道之间、 π 键轨道与孤对电子之间的相互作用。用理论方法估算了稳定化合物的生成热和密度,结果表明不论单双取代,生成热和密度都是随着 N 原子数的增加而增加。

关键词:应用化学; 六元氮杂环; 密度泛函理论; NBO; 高氮化合物中图分类号: TJ55; O64 文献标识码: A

1 引言

含能材料在民用和军事上都得到广泛的应用。目前很多科研人员在寻找新型的高能低感含能材料,以满足军事和航空航天技术发展的要求^[1]。

高能量密度材料的能量主要来自于两个方面: (1)传统炸药如 TNT、HMX 和 RDX 等的能量主要来自于碳链的快速氧化^[2], CL-20 和硝基立方烷等有一部分额外的能量来自于它们的笼型张力结构^[3]; (2)高氮化合物的能量主要来自于其非常高的正生成热^[4]。近几年,高氮含能有机化合物由于自身的很多优点,成为新型含能材料的目标,如3,3′-偶氮双(6-氨基-1,2,4,5-四嗪)和5,5′-偶氮四唑的肼盐^[5]。从已合成的高氮化合物来看,四嗪类衍生物是一种非常有潜力的高能低感炸药,但是理论研究相对较少。所以本研究设计了一系列六元氮杂环取代四嗪环得到的化合物,采用密度泛函理论对其性质进行研究。

2 计算方法

首先采用密度泛函理论(Density Functional Theory, DFT)中的 B3LYP 方法,使用 6-311G(d,p)基组优化所有分子构型,自洽场收敛标准为程序内定值。振动分析表明所有的优化构型均没有虚频,为势能面上的极小点。采用自然键轨道(Natural Bond Orbital,NBO)方法分析了其电荷分布情况以及轨道之间和孤对电子与轨

收稿日期: 2006-07-06; 修回日期: 2006-08-30

基金项目: 国家自然科学基金-中物院 NSAF 联合基金(10576030)

作者简介:周阳(1980-),男,在读研究生,从事含能材料的理论计算。

通讯联系人: 舒远杰,e-mail: syjfree@ sohu. com

道之间的相互作用。通过振动分析得到的热力学数据校正了更高的 B3LYP/6-311 + (2df,dp)水平下的单点能,然后再采用原子化方案(atomic scheme)^[6]计算了所有分子的标准生成热。化合物的理论密度为其分子量与摩尔体积之比,后者可用密度泛函理论(DFT)B3LYP方法,在全优化分子几何构型的基础上,基于 0.001e/Bohr3 的等电子密度面所包围的体积空间,运用 Monte-Carlo 方法求得分子体积,进而求得该化合物的密度^[7,8]。所有的计算都采用 Gaussian 98 量子化学软件包完成。

3 结果与讨论

3.1 单个六元氮杂环

在密度泛函理论(DFT)B3LYP方法下,采用不同的 基组优化了四嗪和三嗪几何结构,并且和实验值进行了 对比,结果见表 1。从表中数据可以发现 6-311G(d,p) 基组与实验值符合较好,时间又相对较经济,所以在 B3LYP/6-311G(d,p)水平上优化了所有的单环分子构 型。优化结果表明,所有分子均为平面刚性结构,氮杂 环上的键长都有平均化的趋势,三嗪环的键长已经完全 平均,均为1.334Å。所有键长都在标准的单键和双键 之间。通过二阶微扰理论计算了这些分子的相互作用 稳定化能 E。E 越大表明供体-受体轨道相互作用越强,即 供体向受体提供电子的倾向越大, 因而电子的离域化程度 越大。其中 E 最大的是键长完全平均的三嗪环,为 159.95 kJ·mol⁻¹;四嗪环上成键 π 轨道与反键 π* 轨道之 间的相互作用稳定化能 E 最大的也有102.55 kJ·mol⁻¹,表 明它们都有很强的电子离域化倾向。另外,分析所有单环 构型的分子轨道,发现所有分子均存在一个离域 π 轨道, 此轨道由所有组成分子的碳、氮原子的 2PZ 轨道组成。

表 1 三嗪和四嗪几何结构的实验和理论数据 Table 1 Experimental and theoretical data of the bond length of 1,2,4,5-tetrazine and 1,3,5-triazine

	1,2,4,5	-tetrazine	1,3,5-triazine		
B3LYP	N—N	C—N	C—N		
6-311G(d,p)	1.322	1.336	1.334		
6-311G + + (d,p)	1.321	1.336	1.334		
cc-pvdz	1.324	1.340	1.338		
cc-pvtz	1.318	1.333	1.331		
aug-cc-pvdz	1.323	1.340	1.338		
aug-cc-pvtz	1.317	1.333	1.331		
experiment ^[16]	1.321	1.334	1.338		
△	TT //\		MN.		
3.2 单环和双环取代			N.		
2.1 几何结构					

3.2 单环和双环取代

3.2.1 几何结构

研究表明,许多有机分子在其中某部分被取代以 后都表现出许多不同的性质。现有的高氮含能材料多 以四嗪环为母体,如 BTATz、DAAT 等[9,10],所以本文 讨论了六元氮杂环直接取代四嗪环上的氢原子后的分 子构型、电子结构等性能。

单环和双环取代四嗪分别有11种情况,首先在 B3LYP/6-311G(d,p)水平下优化了所有分子的构型。 几何结构及参数见图1和图2。从图中可以看出,单 环取代的分子中,两环非共面的分子结构有T2i-a,

T21-a, T3 和 TT, 二面角分别为 37.3°、16.8°、37.3°和 41.2°;双环取代中,非共面的结构有 T22j-a, T22l-a, T33 和 TTT, 二面角分别为 35.0°、15.7°、35.0°和 39.9°。把这些分子构型固定在一个平面上优化,发现 其共面结构有一个虚频存在,说明这些分子的共面结 构不是势能面上的极小点。

从图1中可以看到,一个氢原子被取代后,四嗪中 的 N-N 键长缩短,靠近取代基一侧的 C-N 键长略有 增加,远离取代基一侧的 C-N 键长基本没有变化。接 入相同的分子,不同的接入位置对两环之间的 C-C 键 有一定的影响。分子 T2j-a、T3-a 和 TT 中,取代基上没 有氢原子靠近四嗪环,两环之间的 C-C 键较长,分别 为 1.495Å, 1.495Å 和 1.488Å; 而分子 T1-a、T2d、T2j-c 和 T21-a 中,取代基上有一个氢原子与四嗪环临近,两环 间的 C-C 键长就次之,分别为 1.490Å,1.487Å,1.491Å 和 1.487Å;其他分子中的取代基上有两个氢原子与四 嗪环相邻,其 C-C 键长相对最短。这种趋势在分子 T2j-a,b,c上表现的更为明显。取代基上氢原子与四嗪 环上最近 N 原子的距离在 2.447Å ~ 2.531Å 之间,可能 会发生弱相互作用。而图 2 中可以看到,双环取代与单 环取代有相同的规律,只不过是在对称的两个方向上。

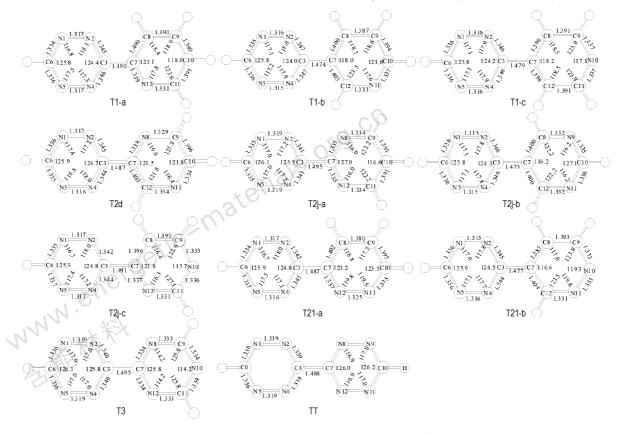


图 1 六元氮杂环单取代四嗪的分子结构及参数

The molecular structures and parameters of the tetrazine substituted by the single six-membered C-N heterocycle

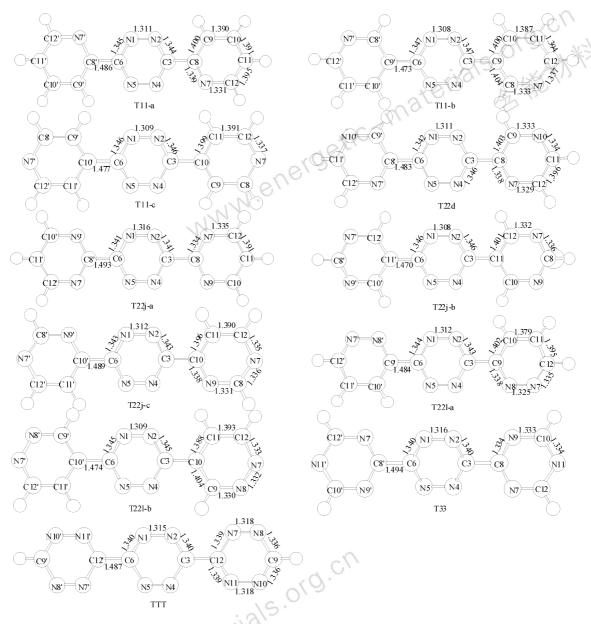


图 2 六元氮杂环双取代四嗪的分子结构及参数

Fig. 2 The molecular structures and parameters of the tetrazine substituted by the double six-membered C-N heterocycles

3.2.2 分子总能量

分析发现,随着六元氮杂环取代基中的氮原子数目的增加,体系的能量都在逐渐降低。把同分异构体中能量最低的认定为最稳定的构型,取其分子总能量值对氦原子数作曲线,如图 3 所示。图 3a 为单环取代四嗪得到的分子总能量与氦原子数之间的关系;图 3b 为双环取代四嗪得到的分子总能量与氦原子数之间的关系。可见,单双环取代四嗪得到的化合物分子总能量有相同的变化趋势,都是随着氦原子数的增加,分子的总能量将逐渐降低,且有很好的线性关系。每增加一个氦原子,分子的总能量约降低 4.2×10⁴ kJ·mol⁻¹。

3.2.3 电子结构及共轭性

采用 NBO 方法计算了上述最稳定构型的净电荷分布。把单个四嗪环上的氢原子看作是取代基,比较了氢原子被六元氮杂环取代基后,对四嗪环上其它原子电荷总量的影响。表 2 列出了四嗪环上与取代基相连 C 原子的自然电荷以及环上其它原子的电荷总量。从表 2 可以看出,六元氮杂环取代氢原子后,四嗪环上与之相连的 C 原子所带的正电荷有很大程度的升高,说明四嗪环上有部分电子发生转移。从两个环上的电荷总量同样可以看出,四嗪环上的电子有一部分转移到了取代基上,说明六元氮杂环作为取代基具有吸电子特性,而且

其吸电子性随着氮原子数的增加而增强。相对于单环 取代,双环取代由于两环在对称方向上同时对四嗪环有 吸电子倾向,致使电子转移发生平衡而有所减弱。

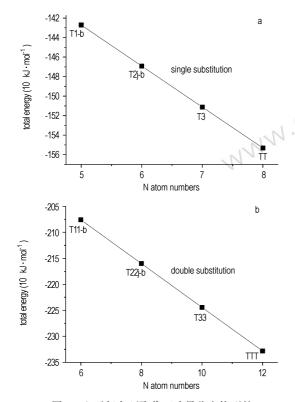


图 3 六元氮杂环取代四嗪最稳定构型的 分子总能量与氮原子数的关系

Fig. 3 Relationship between the molecular energies and the number of N atoms

表 2 最稳定构型上 C 原子的 NBO 电荷以及两个环上的电荷总量 Table 2 The atom NBO charge distribution of the tetrazine ring and the total charge of two rings for the most stable structrues

			110
	С3	the total charge of tetrazine	the total charge of substitute
Т	0.215	-0.196	0.194
T1-b	0.372	-0.063	0.063
T2j-b	0.367	-0.049	0.050
Т3	0.332	-0.012	0.010
ТТ	0.329	-0.001	0.001
Т	0.215	-0.390	0.388
T11-b	0.361	-0.116	0.118
T22j-b	0.359	-0.102	0.104
T33	0.336	-0.028	0.026
TTT	0.335	-0.014	0.014

在表 3 中列出了六元氮杂环取代四嗪最稳定构型的部分电子供体(Donor)轨道和电子受体(Acceptor)轨道以及由二阶微扰理论得到的它们之间的相互作用

稳定化能 E。从表中可以看出,除了 T3 和 TT 以外,取代基与四嗪环之间都发现有较强的供-受体相互作用,其中化合物 T1-b、T2j-b 和 T22j-b 是成键 π 轨道与反键 π * 轨道的相互作用,化合物 T11-b、T33 和 TTT 是孤对电子与反键 π * 轨道(或者是成键 π 轨道与孤对电子空轨道)之间的供-受体相互作用。在化合物 T1-b、T2j-b、T22j-b 中四嗪环上的成键 π 轨道与反键 π * 轨道的相互作用与没有取代之前相比变化不大。而双取代化合物中的 T11-b、T33 和 TTT,其四嗪环上的成键 π 轨道与反键 π * 轨道的相互作用已经强烈的减弱,小于 41. 84 kJ·mol⁻¹而没有列出来;但是四嗪环中 C 原子上的孤对电子与 NN 键的反键 π * 轨道的相互作用大大增强,超过了 418. 4 kJ·mol⁻¹。

表 3 六元氮杂环取代四嗪最稳定构性的部分二阶稳定化能 *E*Table 3 The part stabilization interaction energies (*E*) of the most stable tetrazine structures substituted by

donor acceptor E donor acceptor T1-b BD N1—C6 BD * N4—N5 89.45 T11-b BD N1—N2 LP * C3	E 157.74 157.36
T1-b BD N1—C6 BD * N4—N5 89.45 T11-b BD N1—N2 LP * C3	157.36
BD N2—C3 BD * N1—C6 86.57 BD N4—N5 LP * C3	
BD N2—C3 BD * N4—N5 80.37 LP C6 BD * N1—N2	494.38
BD N4—N5 BD * N2—C3 100.04 LP C6 BD * N4—N5	492.08
BD N4—N5 BD * N1—C6 95.10 LP C6 BD * C8′—C9′	135.35
BD C7—C12 BD * N2—C3 103.72 BD C8—C9 LP * C3	242.63
T2j-bBD N1—N2 BD * C3—N4 100.79 T22j-bBD N1—N2 BD * N5—C6	93.22
BD N1—N2 BD*N5—C6 95.14 BD N1—N2 BD*C3—N4	93.22
BD C3—N4 BD*N5—C6 85.14 BD C3—N4 BD*N5—C6	85.77
BD C3—N4 BD*N1—N2 80.83 BD C3—N4 BD*N1—N2	84.64
BD N5—C6 BD * C3—N4 79.91 BD N5—C6 BD * C3—N4	85.77
BD N5—C6 BD*N1—N2 89.79 BD N5—C6 BD*N1—N2	84.64
BD C7—C12 BD * C3—N4 91.55 BD C10—C11 BD * C3—N4	92.76
BD C10'—C11' BD* N5—C6	92.76
T3 BD N1—C6 BD*N2—C3 81.67 T33 BD N1—N2 LP* C3	178.57
BD N1—C6 BD*N4—N5 85.14 BD N4—N5 LP* C3	178.49
BD N2—C3 BD*N1—C6 78.95 LP C6 BD*N1—N2	461.41
BD N2—C3 BD * N4—N5 87.53 LP C6 BD * N4—N5	461.16
BD N4—N5 BD * N2—C3 101.75 LP C6 BD * N7′—C8	134.43
BD N4—N5 BD*N1—C6 103.55 BD N7—C8 LP* C3	61.92
TT BD N1—C6 BD*N2—C3 83.26 TTT BD N1—N2 LP* C3	179.87
BD N1—C6 BD*N4—N5 85.81 BD N4—N5 LP* C3	179.83
BD N2—C3 BD*N1—C6 77.70 LP C6 BD*N1—N2	451.04
BD N2—C3 BD * N4—N5 86.82 LP C6 BD * N4—N5	450.91
BD N4—N5 BD * N2—C3 102.42 LP C6 BD * N7′—C1:	2′114.14
BD N4—N5 BD*N1—C6 102.91 BD N11—C12 LP* C3	62.68

通过轨道分析四嗪单双环取代的共轭情况,图 4 为所有分子的单个离域 π 轨道图。由图 4 可知,非共面的 T3、TT 和 TTT 分子形成了覆盖整个分子的离域 π 轨道。单环取代情况下的 T1-b 和 T2j-b 分子没有形

成覆盖整个分子的离域 π 轨道,但是四嗪环与取代基上的相邻 C 原子形成了离域 π 轨道;双环取代情况下的 T11-b 和 T22j-b 分子中四嗪上的六个原子分别对称的与两个取代基环形成了离域 π 轨道。以上分析表明,六元氮杂环取代四嗪以后,两环之间存在的较强的相互作用,形成了一定大小的单个离域 π 轨道,保持整个体系的稳定。

3.2.4 前线轨道 HOMO 及 LUMO

分子轨道的分析可提供更多的有关分子的信息,比如电子的结合位置及分子的化学反应性。HOMO-LUMO 能隙也与紫外吸收光谱中最大吸收 λ_{max} 的值非常接近。根据 Koopmans 定理,在 HF 计算中从 HOMO和 LUMO 的本征值还可以得到近似的离子化能与电子亲合势[11]。

四嗪以及六元氮杂环取代四嗪衍生物的前线轨道即 HOMO 和 LUMO 的形状及其在分子中所处的位置画于图 5 中。计算得到的 HOMO 和 LUMO 能量列于表 4。图 5 中显示,氮杂环取代基主要与四嗪的 HOMO 轨道发生作用而与 LUMO 轨道基本没有作用。六元氮杂环取代基对 HOMO-LUMO 能隙 HLG(HOMO-LUMO Gap)有相同的影响,即与单个四嗪环相比,它们的引入将导致 HLG 减小,在吸收光谱中将反应为最大吸收峰红移。其中,双取代导致 HLG 减小的程度要大于单取代。

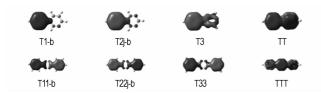


图 4 六元氮杂环取代四嗪最稳定构型的单个离域 π 轨道 Fig. 4 The delocalized π occupied orbitals of the most stable tetrazine structures substituted by C—N heterocycle

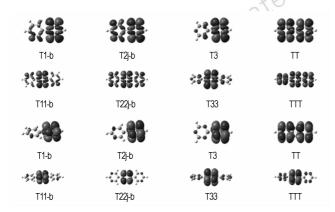


图 5 六元氮杂环取代四嗪最稳定构型的 HOMO 轨道和 LUMO 轨道 Fig. 5 HOMO and LUMO orbitals of the most stable tetrazine structures substituted by the C—N heterocycle

表 4 六元氮杂环取代四嗪最稳定构型的前线轨道能量
Table 4 HOMO and LUMO orbitals energies of
the most stable tetrazine structures substituted by
the C—N heterocycle

					110	•	123	1.1		
		T	T1-b	T2j-b	Т3	TT /	T11-b	T22j-b	T33	TTT
	$E_{ m HOMO}$	-6.94	-6.77	-6.97	-6.94	-7.05	-6.69	-7.02	-6.91	-7.13
	$E_{ m LUMO}$	-3.29	-3.24	-3.46	-3.35	-3.56	-3.24	-3.62	-3.37	-3.76
Δ	$E_{ m LUMO-HO}$	_{MO} 3.65	3.53	3.51	3.59	3.49	3.45	3.40	3.54	3.37

3.2.5 生成热和密度

生成热和密度是衡量含能材料和计算爆速的两个 重要参数,对设计合成新型含能材料极为重要,而且高 氮含能材料正是因为其非常高的正生成热吸引了研究 者们的兴趣,所以生成热的计算无论在理论还是实践 中均具有重要的意义。本文计算了六元氮杂环取代四 嗪最稳定构型的标准生成热和密度,结果见表5。把 标准生成热和密度值对化合物中的氮原子数作曲线, 关系如图 6 所示。图 6 中 a、b 两图为单取代情况,包 括 T1-b、T2j-b、T3 和 TT; c、d 两图为双取代情况,包括 T11-b、T22j-b、T33 和 TTT。从图 6 可以看出,无论单 双取代都是随着取代基中 N 原子数的增加,标准生成 热缓慢线形增加; 当取代基中有 NN 键出现时, 标准生 成热就出现了非线性的急剧增加,因为 NN 键在分解 时会生成最稳定的氮气,而使能量急剧的升高。对密 度与氮原子数的关系曲线做了线形拟合,如 b、d 两图 所示,发现有很好的线形关系,随着氮原子的增加,采 用 Monte-Carlo 方法预测的密度基本呈线性增加。

4 结 论

采用密度泛函理论计算了六元氮杂环取代四嗪所得到的22种体系的几何构型和分子总能量,从能量角度确定8个稳定构型。并对这8个构型的电子结构、共轭性、生成热和密度进行了理论研究。结果表明:

- (1) 氮杂环取代四嗪上的氢原子后,使四嗪环上的 NN 键缩短,靠近取代基一侧的 C—N 键增长;
- (2)取代基没有破坏四嗪环的共轭性,部分体系还形成了由所有原子的 $2p_2$ 轨道组成的离域 π 轨道,有利于分子的稳定性;

表 5 六元氮杂环取代四嗪最稳定构型的标准生成热和密度
Table 5 The heat of formation and density of the most stable tetrazine structures substituted by the C—N heterocycle

	T1-b	T2j-b	Т3	TT	T11-b	T22j-b	T33	TTT
$\Delta H_{\rm f}^{\theta}/{\rm kJ \cdot mol}^{-}$	1 631.1	667.8	712.9	960.1	806.6	880.0	970.4	1465.6
$\rho/g \cdot cm^{-3}$	1.433	1.503	1.531	1.608	1.404	1.513	1.579	1.661

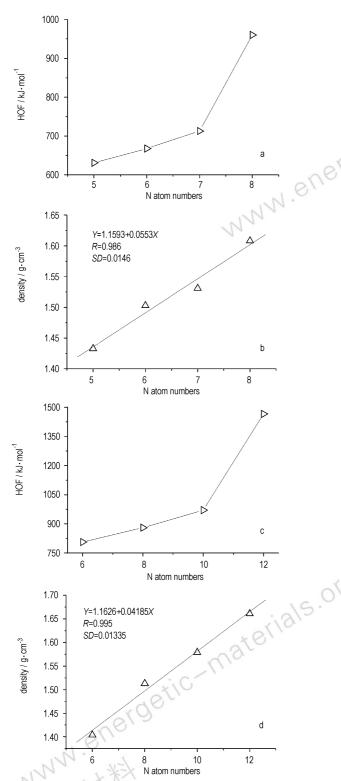


图 6 六元氮杂环取代四嗪最稳定构型的 生成热和密度与氮原子数的关系曲线 Fig.6 Relationship between the HOF, density and the numbers of N atoms for the most stable structures

(3) 氮杂环作为取代基均具有吸电子特性,取代

基的吸电子性随着氮原子数的增加而增强;

- (4)稳定构型的能量与氮原子个数有很好的线形 关系,每增加一个氮原子,分子能量约降低 16 a. u.;
- (5) 理论预测的密度随着氮原子数的增加也有很好的线形关系。

所研究体系的标准生成热在 631.1 ~ 1465.6 kJ·mol⁻¹之间,都具有很好的含能潜力,可以作为潜在的含能材料进行近一步的详细研究。

参考文献:

- [1] A K Sikder, Nirmala Sikder. A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications [J]. *Journal of Hazardous Materials*, 2004, A112: 1-15.
- [2] D E Chavez, M A Hiskey, R D Gilardi. 3,3'-Azobis (6-amino-1,2,4,5-tetrazine): A Novel High-Nitrogen Energetic Material [J]. Angew Chem Int Ed,2000,39(10): 1791-1793.
- [3] M X Zhang, P E Eaton, R Gilardi, Hepta- and Octanitrocubanes [J].

 Angew Chem Int Ed., 2000, 39, 401
- [4] Anton Hammerl, Thomas M Klapötke, Peter Schwerdtfeger. Azolyl-pentazoles as High-Energy Materials: A Computational Study [J]. Chem Eur J, 2003, 9: 5511-5519.
- [5] Anton Hammerl, Thomas M Klapötke, Heinrich Nöth, et al. Synthesis, Structure, Molecular Orbital and Valence Bond Calculations for Tetrazole Azide, CHN₇ [J]. Propellants, Explosives, Pyrotechnics, 2003, 28(4): 156-173.
- [6] 周歌. 几种笼状含能材料及均三嗪类分子器件的理论研究[D]. 博士论文. 成都:四川大学. 2004

 ZHOU Ge. Theoretical Investigation on Several Kinds of Caged Energetic Materials and the Molecular Devices of s-Triazine Series[D]. Cheng Du; Si Chuan university, 2004.
- [7] 邱玲,肖鹤鸣. 由量子化学计算快速预测含能材料晶体密度的简易新方法-HEDM 的定量分子设计[J]. 含能材料,2006,14(2):158.

 QIU Ling, XIAO He-ming. A New Simple Method for Rapid Predicting Crystalline Densities of Energetic Materials Based on Quantum Chemistry-Quantitative Molecular Design of HEDM. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2006, 14(2):158
- [8] 邱玲,肖鶴鸣,居学海等. 双环-HMX 结构和性质的理论研究[J]. 化学学报, 2005, 63(5): 377-384.

 QIU Ling, XIAO He-Ming, JU Xue-Hai, et al. Theoretical Study on the Structures and Properties of Bicyclo-HMX[J]. ACTA CHIMICA SINICA, 2005, 63(5): 377-384.
- [9] D E Chavez, M A Hiskey, D L Naud. Tetrazine Explosive [J]. Propellants, Explosives, Pyrotechnics, 2004, 29(4): 209-215.
- [10] P F Pagoria, G S Lee, A R Mitchell, et al. A Review of Energetic Materials Synthesis [J]. Thermochimica Acta, 2002, 384: 187 - 204.
- [11] 郑文旭. 三均三嗪及三均三嗪类化合物结构和性质的理论预测性研究[D]. 成都:四川大学,2005.

 ZHENC Won you. Theoretical Predictive Study on the Structures and Prop.

ZHENG Wen-xu. Theoretical Predictive Study on the Structures and Properties of Tri-s-triazines [D]. Cheng Du: Si Chuan university, 2005.

DFT Studies on the Tetrazine Substituted by Six-membered C-N Heterocyclic Derivatives

ZHOU Yang¹, LONG Xin-ping¹, SHU Yuan-jie¹, WANG Xin², TIAN An-min²

- (1. Institute of Chemical Materials, CAEP, Mianyang 621900, China;
- 2. Department of chemistry, Sichuan University, Chengdu 610064, China)

Abstract: 22 Tetrazine substituted by six-membered C—N heterocyclic derivatives have been investigated by density functional theory. Their optimized geometry structures, electronic structures, conjugation, molecular energies, heats of formation (HOF) and density (ρ) were calculated at the B3LYP/6-311G(d,p) level. The results show that most of the species keep a planar structure and exit considerable conjugation over the whole molecule, which enhances the stability of these derivatives. There is a good linear relationship between the molecular energies, density and N atoms in these species. The studies show most of the species have high HOFs and relative stabilities. The HOFs of these compounds are between 631.1 kJ·mol⁻¹ and 1465.6 kJ·mol⁻¹.

Key words: applied chemistry; tetrazine; C-N heterocycle; theoretical study; heat of formation

新书推荐: 硝化反应最新专集——《硝酰阳离子理论》

由南京理工大学原副校长、博士生导师吕春绪教授撰写的专著《硝酰阳离子理论》一书,于 2006年9月兵器工业出版社正式出版,由《爆破器材》编辑部发行。

吕春绪教授多年来从事硝化反应理论及其应用技术的教学、科研、开发和推广工作,是南京理工大学化工与技术一级学科带头人,应用化学国家级重点学科带头人,我国炸药领域著名的专家、学者,国家有突出贡献的中青年专家。他先后获得国家科技进步二、三等奖、国家科技发明三等奖,部委科技进步特等奖等 12 项、发明专利 18 项,出版专著教材 17 部。吕春绪教授在近十几年的硝化研究及指导硕士生、博士生学位论文过程中,对硝化反应,如超酸硝化剂、区域选择性硝化、绿色硝化等,硝酰阳离子与硝酸合氢离(H_2NO^{3+})和有机物的结合过程,特别是与胺类及醇类的反应,都有独特见解及创新。这些内容反映了当前该研究领域的新成就及发展新特点。

《硝酰阳离子理论》包括了硝酰阳离子理论的基本内容,诸如被硝化物的硝化特征、硝酰阳离子结构与光谱、生成反应、宏观载体特征、反应机理、反应动力学以及两相硝化理论等,着重介绍了芳烃区域选择性(定向)硝化以及绿色硝化理论与技术。该书以硝酰阳离子为主线,突出硝酰阳离子的结构、载体特征、生成反应、与有机物相互作用及副反应,同时较详细介绍了两相硝化、区域选择性硝化和绿色硝化等内容,力求其全面性。

吕春绪教授在撰写《硝酰阳离子理论》一书的过程中注重其理论性、新颖性、先进性、系统性及实用性。特别在硝化技术方面,围绕硝化过程中的某些重点及难点,就配酸技术、过程控制、反应器设计及计算机模拟等介绍了相应的新技术。作为一本以硝酰阳离子为主线的、系统阐述硝酰阳离子理论的硝化反应方面的专著,在国内外尚属首次出版。

该书可作为高等院校有关专业的教材,适合大学生、研究生及教师阅读,也可供从事硝化反应研究、设计、生产、使用及管理的工程技术人员参考。

订购地址:南京理工大学化工学院《爆破器材》编辑部,邮编:210094,电话:025-84315530。

(中国工程物理研究院化工材料研究所 舒远杰供稿)