CHINESE JOURNAL OF ENERGETIC MATERIALS
+高级检索
参考文献 1
李玉川, 庞思平.全氮型超高能含能材料研究进展[J]. 火炸药学报, 2012, 35(1): 1-8.
LIYu‑chuan, PANGSi‑ping. Progress of all‑nitrogen ultrahigh‑energetic materials[J]. Chinese Journal of Explosive & Propellants, 2012, 35(1): 1-8.
参考文献 2
卢艳华, 何金选, 雷晴, 等.全氮化合物研究进展[J]. 化学推进剂与高分子材料, 2013, 2(3): 28-34.
LUYan‑hua, HEJin‑xuan, LeiQing, et al. Research progress in all‑nitrogen compounds[J]. Chemical Propellants & Polymeric Materials, 2013, 2(3): 28-34.
参考文献 3
ZarkoV E. Searching for ways to create energetic materials based on polynitrogen compounds (review)[J]. Combustion Explosion & Shock Waves, 2010, 46(2): 121-131.
参考文献 4
WodtkeA M. All‑nitrogen chemistry: how far are we from N60?[J]. International Reviews in Physical Chemistry, 2006, 25(4): 527-552.
参考文献 5
NguyenM T, McginnM A, HegartyA F, et al. Can the pentazole anion (N5‑) be isolated and/or trapped in metal complexes?[J]. Polyhedron, 1985, 4(10): 1721-1726.
参考文献 6
BlancoF, AlkortaI, ElgueroJ. The structure of alkali metal derivatives of azoles: N‑sigma versus pi structures[J]. Journal of Physical Chemistry A, 2008, 112(33): 7682.
参考文献 7
ChristeK O, WilsonW W, SheehyJ A, et al. N5+: A novel homoleptic polynitrogen ion as a high energy density material[J]. Angewante Chemie International Edtion, 1999, 111: 2112-2118.
参考文献 8
AshwaniV, WilliamW W, VandanaV, et al. Polynitrogen chemistry. synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+[J]. Journal of the American Chemical Society, 2001, 32(40): 6308-6313.
参考文献 9
WilliamW. W, AshwaniV, VandanaV, et al. Polynitrogen chemistry: preparation and characterization of (N5)2SnF6, N5SnF5, and N5B(CF3)4[J]. Chemistry, 2003, 9(12): 2839-2844.
参考文献 10
RalfH, StefanS, ThorstenS, ChristeK O. High‑energy‑density materials: Synthesis and characterization of N5+P(N3)6-, N5+B(N3)4-, N5+HF2-·nHF, N5+BF4‑, N5+PF6-, and N5+SO3F-[J]. Angewante Chemie International Edtion, 2004, 116(37): 5027-5032.
参考文献 11
CacaceF, DeP G, TroianiA. Experimental detection of tetranitrogen[J]. Science, 2002, 295(5554): 480-481.
参考文献 12
HansenN, WodtkeA M. Velocity map ion imaging of chlorine azide photolysis: Evidence for photolytic production of cyclic‑N3[J]. Journal of Physical Chemistry A, 2003, 107(49): 10608-10614.
参考文献 13
SamartzisP C, LinJ J, ChingT T, et al. Two photoionization thresholds of N3 produced by ClN3 photodissociation at 248 nm: further evidence for cyclic N3[J]. Journal of Chemical Physics, 2005, 123(5): 2177.
参考文献 14
HansenN, WodtkeA M, GoncherS J, et al. Photofragment translation spectroscopy of ClN3 at 248 nm: Determination of the primary and secondary dissociation pathways[J]. Journal of Chemical Physics, 2005, 123(10): 104305.
参考文献 15
WodtkeA M, HansenN, RobinsonJ C, et al. The Cl to NCl branching ratio in 248‑nm photolysis of chlorine azide[J]. Chemical Physics Letters, 2004, 391(4): 334-337.
参考文献 16
ChenJ, LeiW, LiC, et al. Flexible quantum dot sensitized solar cell by electrophoretic deposition of CdSe quantum dots on ZnO nanorods[J]. Physical Chemistry Chemical Physics, 2011, 13(29): 13182-13184.
参考文献 17
SamartzisP C, HansenN, WodtkeA M. Imaging CIN(3) photodissociation from 234 to 280 nm[J]. Physical Chemistry Chemical Physics, 2006, 8(25): 2958-2963.
参考文献 18
HansenN, WodtkeA M, KomissarovA V, et al. Ion dissociation dynamics of the chlorine azide cation (ClN3+) investigated by velocity map imaging[J]. Journal of Chemical Physics, 2003, 118(23): 10485-10493.
参考文献 19
ZhangP, MorokumaK, WodtkeA M. High‑level ab initio studies of unimolecular dissociation of the ground‑state N3 radical[J]. Journal of Chemical Physics, 2005, 122(1): 14106.
参考文献 20
BabikovD, KendrickB K, ZhangP, et al. Cyclic‑N3. II. Significant geometric phase effects in the vibrational spectra[J]. Journal of Chemical Physics, 2005, 122(4): 9740.
参考文献 21
BabikovD, ZhangP, MorokumaK. Cyclic‑N3. I.An accurate potential energy surface for the ground doublet electronic state up to the energy of the 2A2/2B1 conical intersection[J]. Journal of Chemical Physics, 2004, 121(14): 6743-6749.
参考文献 22
FauS, Bartlett R JK W J. On the stability of N5+N5-[J]. Journal of Physical Chemistry A, 2002, 106(18): 725-737.
参考文献 23
GlukhovtsevM N, JiaoH, SchleyerP R. Besides N(2), What is the most stable molecule composed only of nitrogen atoms?[J]. Inorganic Chemistry, 1996, 35(24): 7124.
参考文献 24
LeinM, FrunzkeJ, TimoshkinA, et al. Iron bispentazole Fe(η5‑N5)2, a theoretically predicted high‑energy compound: Structure, bonding analysis, metal‑ligand bond strength and a comparison with the isoelectronic ferrocene[J]. Chemistry‑A European Journal, 2015, 7(19): 4155-4163.
参考文献 25
StrakaM, Pyykkö†P. One metal and forty nitrogens. Ab initio predictions for possible new high‑energy pentazolides[J]. Cheminform, 2004, 35(8): 8241-8249.
参考文献 26
HuisgenR, UgiI. Zur Lösung eines klassischen problems der organischen stickstoff‑chemie[J]. Angewante Chemie International Edtion, 1956, 68: 705-706.
参考文献 27
ZhangC, SunC, HuB, et al. Synthesis and characterization of the pentazolate anion cyclo‑N5- in (N5)6(H3O)3(NH4)4Cl[J]. Science, 2017, 355(6323): 374.
参考文献 28
HantzschA. diazoniumazideUeber, Ar.N5[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1903, 36(2): 2056-2058.
参考文献 29
IvarU, H. PentazoleRolf, II.die zerfallsgeschwindigkeit der aryl‑pentazole[J]. European Journal of Inorganic Chemistry, 1958, 91(3): 531-537.
参考文献 30
IvarU, HansP, LiselotteB. Die reduktion von alkyl‑und aryl‑adiden mit alkalischem arsenit. Chemische Bericht, 1958, 91(11): 2330-2336.
参考文献 31
ZhangC, SunC, HuB, LuMing. Investigation on the stability of multisubstituted arylpentazoles and the influence on the generation of pentazolate anion. Journal of Energetic Materials, 2016, 34(1): 103-111.
参考文献 32
UgiI, HuisgenR. Pentzole Ⅱ, die zerfallsgeschwindigkeit der aryl‑pentazole[J]. Chemische Berichte, 1961, 91: 531-537.
参考文献 33
PeterC, A ÖHenrik, ToreB.The stability of arylpentazoles[J]. Journal of Physical Chemistry A, 2004, 108(36): 7463-7467.
参考文献 34
VijA, PavlovichJ G, WilsonW W, et al. Experimental detection of the pentazole anion[J]. Angewandte Chemie International Edition, 2002, 41(16): 3051-3054.
参考文献 35
ButlerR N, StephensJ C, BurkeL A. First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: A new N‑dearylation of 1‑(p‑methoxyphenyl) pyrazoles, a 2‑(p‑methoxyphenyl) tetrazole and application of the methodology to 1‑(p‑methoxyphenyl)[J]. Chemical Communications, 2003, 34(31): 1016-1017.
参考文献 36
BazanovB, GeigerU, CarmieliR, et al. Detection of cyclo‑N5- in THF Solution[J]. Angewandte Chemie International Edition, 2016, 55(42): 13233-13235.
参考文献 37
XuY, LinQ, WangP, et al. Stabilization of the pentazolate anion in three anhydrous and metal‑free energetic salts (N5-)2DABTT2+, N5-GU+, and N5-Oxahy[J]. Chemistry An Asian Journal, 2018, 13(8): 924-928.
参考文献 38
XuY, WangQ, ShenC, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549(7670): 78-81.
参考文献 39
XuY, WangP, LinQ, et al. A carbon‑free inorganic‑metal complex consisting of an all‑nitrogen pentazole anion, a Zn(ii) cation and H2O[J]. Dalton Transactions, 2017, 46: 14088-14093.
参考文献 40
ZhangC, YangC, HuB, et al. A symmetric Co(N5)2(H2O)4·4H2O high‑nitrogen compound formed by Cobalt(II) cation trapping of a cyclo‑N5- anion[J]. Angewandte Chemie International Edition, 2017, 56(16): 4512-4514.
参考文献 41
XuY, LinQ, WangP, et al. Syntheses, crystal structures and properties of a series of 3D metal‑inorganic frameworks containing pentazolate anion. Chemistry An Asian Journal, 2018, doi: 10.1002/asia.201800476.
参考文献 42
SunC, ZhangC, JiangC, et al. Synthesis of AgN5 and its extended 3D energetic framework[J]. Nature Communications, 2018, 9(1): 1269.
参考文献 43
ZhangQ, ZhangW, WangK, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages[J]. Angewandte Chemie International Edition, 2018, 57(10): 2592-2595.
参考文献 44
ChristeK O. Polynitrogen chemistry enters the ring[J]. Science, 2017, 355(6323): 351.
参考文献 45
SteeleB A, StavrouE, CrowhurstJ C, et al. High‑pressure synthesis of a pentazolate salt[J]. Chemistry of Materials, 2017, 29(2): 735-741.
参考文献 46
YuT, MaY, LaiW, et al. Roads to pentazolate anion: a theoretical insight[J]. R. Soc. open sci, 2018, 5: 172269.
参考文献 47
PengF, YaoY, LiuH, et al. Crystalline LiN5 predicted from first‑principles as a possible high‑energy material[J]. Journal of Physical Chemistry Letters, 2015, 6(12): 2363-2366.
参考文献 48
SteeleB A, OleynikI I. Novel potassium polynitrides at high pressures[J]. Journal of Physical Chemistry A, 2017, 121(46): 8955-8961.
参考文献 49
WilliamsA S, SteeleB A, OleynikI I. Novel rubidium poly‑nitrogen materials at high pressure[J]. Journal of Chemical Physics, 2017, 147(23): 234701.
参考文献 50
陆明.对全氮阴离子N5-非金属盐能量水平的认识[J]. 含能材料, 2017, 25(7): 530-532.
LUMing. Opinion on the energy level of metal‑free pentazolate salts[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(7): 530-532.

    摘要

    早期的五唑化学研究主要集中在芳基五唑的取代基效应和化合物稳定性等方面,但均未能成功制备出在室温下稳定存在的cycloN5-化合物。2017年,我国科学家首次在低温条件下经过氧化切断的方法制备出稳定的cycloN5-,通过阳离子交换等方法得到不同结构的五唑含能离子盐,引起了含能材料领域的广泛关注。目前,全氮五唑材料的研究取得了一系列突破性进展,已成功制备出室温稳定的全氮五唑离子盐(cycloN5-),五唑类离子盐分解温度大多在100 ℃以上,且五唑阴离子能与富氮阳离子成盐,为开发新型五唑含能材料提供了新思路。本文梳理了五唑阴离子cycloN5-的理论研究、合成探索、结构表征、以及对五唑化合物未来发展的展望,从而为从事全氮材料合成研究工作者提供参考。

    Abstract

    In the early stage, studies on pentazole chemistry are mainly focused on the substituent effect and stability of aryl pentazole compounds, but the successful preparation of room‑temperature stable pentazole ionic compounds has not been achieved. Until to 2017, for the first time, the Chinese scientists reported their successful preparation of isolated and stable cycloN5- compounds through an oxidative cleavage strategy at low temperature. Subsequently, a variety of cycloN5- based salts with different structures were synthesized, attracting a wide of attention in the fields of energetic materials. Up to now, full‑nitrogen pentazole materials have achieved a series of breakthroughs and various full‑nitrogen pentazole salts have also been prepared with the decomposition temperatures mostly higher than 100 ℃. The ionic salts based on cycloN5- anion and nitrogen‑rich cations will open a new avenue to develop cycloN5- based energetic materials. This work reviews the theoretical calculations, organic syntheses, structural characterization, and the perspectives on pentazole compounds, which aims to provide guidance for the researchers working in the field of polynitrogen materials.

  • 1 引 言

    1

    高能量密度材料(HEDMs)是武器装备实现“远程打击”和“高效毁伤”的关键材料之一。随着现代战争对武器装备要求的不断提升,发展新型高能量密度材料一直受到世界各国的高度重视。当前,随着含能材料学科发展的不断深入,传统CHON类含能材料面临能量密度不高的瓶颈(理论密度2.2 g·cm-3),新一代高能量密度材料发展亟需新的理论和方向。全氮化合物(Nn,n>2)近年来成为高能量密度材料领域关注的重点,这种全部由N—N键或N N键组成的化合物分解生成N2分子,同时放出大量的能量,其储‑释能规律也有别于传统CHON类含能材料。理论计算表明,全氮化合物具有更高的生成焓(8×103~2×104 kJ·kg-1),能量可达3~8倍TNT当量,理论推进比冲可达350~500 s,且具有高生成焓、爆轰产物清洁无污染等优点。因此,设计合成新型全氮含能化合物是高能量密度材料的重要发展方向,可显著提升材料的能量水平,已成为含能材料领域的研究前沿和热点之[1,2,3]

    1772年,Rutherford[4]等首次在他的论文中提到N2分子,这是人类发现的首个全氮化合物分子。相比较于N2分子,其他全氮化合物Nnn>2)还未在大自然界中发现。N2中NN键能(946 kJ·mol-1)远高于3倍N—N单键(159.9×3=479.7 kJ·mol-1)及1.5倍N N双键键能(418.2×1.5=627.3 kJ·mol-1),所以N—N和N N键断裂时会释放出巨大能量。从热力学角度,除氮气外,其它全氮类物质Nnn>2)非常不稳定,很容易分解成N2,合成难度极大。这也导致在N2被发现后的200多年里,人们新合成的全氮化合物寥寥无几。直到1890年,Curtius[4]等首次发现了氮气之外的另一种稳定全氮离子N3。随着计算化学的发展,理论化学家对许多全氮化合物Nn(2<n≤60)的结构和稳定性进行了预测研[5,6],但全氮物质的合成研究发展仍然非常缓慢。直到1999年,美国南加州大学Christe[7]等首次报道合成出呈折线形结构的N5阳离子(N5+),随后不久,Christe[8,9,10]等又陆续报道了十几种由N5+组成的盐类物质。然而,N5+离子的合成需要在无水无氧和超低温下进行,一定程度上阻碍了该类化合物的性能和应用研究。2002年,Cacace[11]等通过对氮气进行电子轰击,首次发现了一种存在时间超过1 μs的N4化合物的同分异构体N4+,并证明其结构为线形。2003年,Hansen和Wodtke[12]等首次检测到环状N3的化合物,随后用理论计算和实验的方法予以证[13,14,15,16,17,18,19,20,21]。Barlett[22]等通过理论计算得出高能量密度全氮化合物N5+N5-密度大约为1.9 g·cm-3,晶格能为502.3~586.0 kJ·mol-1,并且探讨了全氮化合物N5+N5-稳定存在的可能性。环状五唑负离子N5-具有共振结构,使其表现出一定的芳香性,结构比较稳定,cycloN5-可与含能阳离子、金属离子形成含能离子化合物,有希望成为性能优异的高能量密度材[23,24,25]。自1903年以来,cycloN5-结构已被提出一个多世纪,而稳定的五唑化合物一直未被成功合成出来,成为制约全氮化学发展的重大挑战之一。1956年,Huisgen和Ugi[26]首次在低温条件下合成出能稳定存在的芳基五唑化合物,这些化合物室温下迅速分解成芳基叠氮和N2。随后,大量含不同取代基的芳基五唑及其衍生物被相继合成。cycloN5-离子盐合成的难点在于其前驱体芳基五唑的稳定性较差,同时芳基五唑分子中五唑环N—N键的键能小于连接芳基与五唑环的C—N键的键能,这就意味着在化学反应中芳基五唑分子的N—N键比C—N键更易于断裂,直接打断芳基五唑分子的C—N键会同时导致五唑环的破裂而无法获得完整的cycloN5-离子,这也是合成cycloN5-离子具有超高挑战性的原因。直到2017年,我国南京理工大学胡炳成和陆[27]等首次成功制备出室温稳定存在的环状五唑阴离子盐(N5)6(H3O)3(NH4)4Cl,热分析结果显示这种盐分解温度为116.8 ℃,具有良好的热稳定性,由此,cycloN5-的合成研究取得了突破性进展。

    五唑离子(cycloN5-)作为全氮材料中重要的结构,近年来研究不断取得突破,引起了含能材料研究领域的巨大关注。本文围绕五唑化学,回顾全氮五唑离子材料领域中:中间体芳基五唑的性质,芳基五唑切断方法的多种尝试,cycloN5-的成功合成和结构表征,五唑化合物发展现状,高压合成五唑化合物,理论计算等方面,并讨论了它在未来的发展方向。希望这篇综述能为含能材料以及全氮材料分子合成领域的研究人员提供借鉴和参考。

  • 2 合成探索与结构表征

    2
  • 2.1 芳基五唑的合成探索

    2.1

    五唑化合物RN5的历史可追溯到1903年,Hantzsch[28]等试图用苯基叠氮化合物来合成苯基五唑,但是没能成功。经过大半个世纪的不断失败和摸索,终于在1956年由Huisgen[26]和Ivar[29,30]等首次在低温条件下合成出稳定存在的芳基五唑Ph‑N5,并且经过表征证明此结构。其方法为以取代芳胺为原料,在低温条件下进行重氮化反应,再加入甲醇和石油醚,降温至-40 ℃,缓慢加入冷的NaN3溶液进行3+2环加成反应,可以生成芳基五唑化合[31](Scheme 1)。

    Scheme 1 Synthetic route of arylpentazoles[31]

  • 2.2 芳基五唑的稳定性比较

    2.2

    芳基五唑作为中间体,其稳定性对合成五唑化合物有着至关重要的作用。Ugi[32]在0 ℃的甲醇中对不同取代基的芳基五唑分解速率进行了测试,利用气体收集装置来测量芳基五唑分解产物N2的总量,来反推芳基五唑的分解速率,如图1所示。从图中p‑OH、m‑OH取代基和p‑Cl、m‑Cl取代基比较可知,供电子基团在对位的芳基五唑更加稳定,分解速率更低。并且随着基团供电子能力的提升,芳基五唑化合物产生的N2的总量更少,分解速率更低。

    图1
                            芳基五唑在0 ℃甲醇中分解速率图[32]

    图1 芳基五唑在0 ℃甲醇中分解速率[32]

    Fig.1 Decomposition rate of arylpentazoles in methyl alcohol at 0 [32]

    南京理工大学胡炳[31]等合成了一系列含不同取代基的芳基五唑化合物,研究苯环上的取代基位置和数量与芳基五唑稳定性之间的关系,并且通过电喷雾质谱来推断芳基五唑的分解速率和反应路径。如表1所示,将下列6种不同的芳基五唑化合物在不同温度下存放,化合物1~5都可以在-70 ℃下进行长期存放。相比较于间位和对位取代的芳基五唑,化合物5和6在邻位上有取代基会产生明显空间位阻效应,导致苯环与五唑环不在同一平面,极大降低了芳基五唑的稳定性。比较化合物1~4,可以发现在间位上提高供电子基团的数量和供电子能力可以增加芳基五唑的稳定性,为下一步去芳基化提供更加稳定的中间体。

    表 1 芳基五唑不同温度下分解速率[31]

    Table 1 Decomposition rate of arylpentazoles at several temperatures[31]

    compoundstructuretemperature
    -70 ℃ / d-30 ℃ / d-20 ℃ / d-10 ℃ / h
    1html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image003.pnglong‑term storage≥30≤102-6
    2html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image004.pnglong‑term storage≥30≥205-10
    3html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image005.pnglong‑term storage≥60≥308-12
    4html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image006.pnglong‑term storage≥60≥30≥12
    5html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image007.pnglong‑term storage≥30≤30-1
    6html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image008.png<2inexistenceinexistenceinexistence
    表 1
                    芳基五唑不同温度下分解速率表[31]

    Carlqvist[33]等通过密度泛函理论(DFT)的方法,对间位和对位取代的芳基五唑进行了理论计算。通过计算相应芳基五唑分解能垒ΔE来比较其稳定性大小,计算结果与上述两种实验结果一致,即随着取代基吸电子基团能力增强,芳基五唑稳定性降低,供电子能力提高,芳基五唑稳定性上升。例如4‑硝基苯基五唑分解能垒ΔE为77.9 kJ·mol-1,稳定性最差;4‑羟基苯基五唑负离子分解能垒ΔE为100.0 kJ·mol-1,稳定性最好。

    上述结果表明,供电子基团和缺电子的五唑环能够形成电子共振作用,比吸电子基团更能使芳基五唑稳定。并且取代基位点也对芳基五唑稳定性起到很大的作用,因为五唑基团较大,如果在芳环邻位上引入基团,会使空间位阻增大,导致芳基五唑极不稳定,其稳定顺序为:对位>间位>邻位。综上,苯环对位上的取代基供电子能力越强,芳基五唑化合物越稳定,反之,吸电子能力越强,芳基五唑越容易分解。除取代基团外,Ivar[30]等发现使用极性溶剂也能提高芳基五唑的稳定性。芳基五唑基态的极性比过渡态极性大,所以稳定性随着溶剂极性的增加而增加。

  • 2.3 cyclo‑N5-探索

    2.3

    2002年Christe和Vij[34]等在乙腈溶液中,以对羟基苯基五唑为研究对象,利用电喷雾电离源结合阴离子扫描模式,用不同的碰撞电压对其进行检测分析,如图2所示。使用低电压-10 eV时,可以观察到m/z=134,106,78的峰,表明五唑环的N N键断裂开环,失去一分子N2形成芳基叠氮根,然后再失去N2和CO。碰撞电压为-30 eV时,m/z=78,52,50的峰强度增大。但是当提高电压达到-75 eV时,可以得到m/z=70,52,50和42的峰。该研究表明在合适的条件下,芳基和五唑之间的C—N键能够被切断而得到完整的五唑环,这是第一次通过质谱检测到五唑环。

    图2
                            质谱检测五唑信号[34]

    图2 质谱检测五唑信[34]

    Fig.2 Mass spectrum signal of pentazoles[34]

    硝酸铈铵(CAN)能够在甲醇‑水溶液中发生N‑脱酰反应,可以将对甲氧苯基醚和对甲氧苯基氮杂环化合物中的对甲氧苯基氧化为苯醌。2003年Burke[35]等采用该方法,合成15N标记的芳基五唑化合物,溶于CD3OD和D2O的溶液中,并且加入过量的Zn(NO32,在-40 ℃和硝酸铈铵的条件下进行反应,在核磁谱图上可以发现随着芳基五唑15N信号减弱,δ在-10.0±2.0附近出现一处新15N信号,该信号与cycloN5-的理论值相近,作者推测是生成了HN5化合物(Scheme 2)。

    Scheme 2 Attempts to synthesize cycloN5- with CAN[35]

    2016年Haas[36]等采用碱金属还原切割芳基五唑,检测到五唑阴离子的存在,如Scheme 3所示。将苯基五唑溶于-40 ℃无水THF溶液中,待恒温后再加入碱金属(Na或K),搅拌数天,在碱金属表面出现一层凝胶状物质,用高效液相色谱和质谱检测到m/z=147的信号。同样采用电子自旋共振也会给出芳基五唑的信号;相反,没有加入碱金属则不会观察到EPR信号;再将该溶液加热到室温,维持几分钟后再重新冷却到-40 ℃,HPLC/MS设备检测到m/z=70的信号峰,再过0.5~3.5 min后,出现m/z=42的信号峰,该过程可能是五唑分解生成叠氮根N3-

    Scheme 3 Reduction of phenylpentazole by alkali metals[36]

  • 3 五唑化学研究现状

    3

    2017年初,南京理工大学胡炳成、陆[27]等报道了一例室温下稳定存在的五唑铵盐(cycloN5- salts),代表着我国在五唑材料研究方面取得了重大突破,引起了含能材料领域的极大关注。这也是首次公开报道能够在室温下稳定存在的五唑化合物,并通过单晶表征手段对其结构加以研究。他们采用间氯过氧苯甲酸(m‑CPBA)和甘氨酸亚铁(Fe(Gly)2)分别作为切断试剂和助剂,通过氧化断裂的方式首次成功制备室温下稳定的全氮阴离子盐(N5)6(H3O)3(NH4)4Cl(白色固体),最后一步产率为19 % [27](Scheme 4)。

    Scheme 4 First synthetic route of pentazolate salt at ambient temperature[27]

  • 3.1 常温常压下合成

    3.1
  • 3.1.1 五唑非金属盐研究现状

    3.1.1

    (N5)6(H3O)3(NH4)4Cl是第一个在室温下能够稳定存在的五唑离子盐,密度为1.34 g·cm-3,如图3所示。单晶X‑射线衍射结果表明:在该化合物的晶体结构中,五唑环具有高度的对称性,所有氮原子在一个平面上,氮氮键键长介于N—N单键和N N双键之间。五唑环阴离子通过氢键分别同两个铵离子和三个质子化的水分子相连接来平衡电荷,其中N—N,N—O之间的距离分别2.91 Å和2.99 Å。从结构上进一步分析表明,该全氮化合物的晶体结构可以看作是以氯离子为中心,通过阳离子层,阴离子层由内而外延展而成的。晶体中的氯离子,铵离子和质子化的水分子都对cycloN5-环的稳定做出了贡献。该结构中含有大量氢键,对五唑负离子稳定起了很大作用,热分析结果显示这种盐分解温度为116.8 ℃,具有良好的热稳定性。

    图3
                            (N5)6(H3O)3(NH4)4Cl晶体结构[27]

    图3 (N5)6(H3O)3(NH4)4Cl晶体结[27]

    Fig.3 Crystal structures of (N5)6(H3O)3(NH4)4Cl[27]

    最近,陆[37]等还报道了三种非金属的五唑盐,阳离子分别为DABTT2+,GU+和Oxahy+,通过五唑钠盐[Na(H2O)(N5)]·2H2O与对应阳离子氯盐的离子交换反应制备(Scheme 5),最后将Na+交换成该三种非金属阳离子,并且可以将分子中的水分子除去,形成无水化合物。这三种盐分解温度为95~110 ℃,密度范围为1.596~1.681 g·cm-3,理论爆速为6920~8320 m·s-1

    Scheme 5 Pentazolate anion combined with DABTT2+, GU+ and Oxahy+[37]

  • 3.1.2 五唑金属盐研究现状

    3.1.2

    金属离子在配位稳定化五唑环方面也具有重要作用。例如,过渡金属Mn,Fe,Co等与cycloN5-可以通过η—σ键形成配合物来形成稳定化合物。陆[38,39,40,41,42]等成功合成出五唑钠盐[Na(H2O)(N5)]·2H2O,并且用钠盐与许多金属盐进行离子交换,目前已知的金属阳离子已经有Na+,Fe2+,Co2+,Mg2+,Mn2+,Zn2+,Ag+,Cu2+和Ba2+,如图4所示。

    图4
                            目前部分已知五唑盐晶体结构[38,39,40,41,42]

    图4 目前部分已知五唑盐晶体结[38,39,40,41,42]

    Fig.4 Several crystal structures of known pentazolate salts[38,39,40,41,42]

    由于cycloN5-环上有五个相同的配位点,可与金属产生多种配位方式,形成多维度的金属五唑骨架结构(MPFs),所以在不同投料比和不同溶剂中可能会有无数种晶体结构。比如五唑钠盐目前报道有[Na(H2O)(N5)]·2H2O和MPF‑1[43]两种不同结构,前者是五唑环上只有两个N原子与Na原子配位,后者是每个N原子都与Na原子配位形成具有多空孔沸石结构的MPFs。与MPF‑1一致,Ag+,Cu2+和Ba2+同样可以配位生成3D MPFs结[41,42]。美国南加州大学Christe[44]认为,在cycloN5-与金属配位的过程中,生成σ键会比π键更加稳定,π键的生成会导致芳香性的破坏。目前发现的五唑金属盐都是以σ键连接,部分证实了该说法。

  • 3.2 高压合成

    3.2

    2017年,Oleynik[45]等通过理论预测成功在60 GPa的高压下合成得到了cycloN5-金属盐(CsN5)的晶体。该方法采用USPEX第一性原理计算的方法来预测在不同压力下的CsxNy化合物可能存在的结构,在60 GPa和高温的条件下,通过理论预测发现有两种可能结构:Pbca‑CsN5P‑1‑CsN5。将CsN3和液氮放入金刚石压腔中,采用加压和激光加热,发现在激光加热中心会产生一块透明的物质,并且通过XRD和拉曼光谱分析与P‑1‑CsN5结构信息吻合,说明与理论预测结构一致。这种透明的新物质在18 GPa以上能够保持稳定。

  • 3.3 理论计算与预测

    3.3

    2018年Yu[46]等通过对cycloN5-机理进行理论计算,推测了氧化切断C—N键生成五唑化合物的可能路径,并对目前稳定存在的五唑离子盐进行稳定性研究。计算结果表明,cycloN5-能够被m‑CPBA连续氧化生成羟基五唑和二羟基五唑两种物质,并且稳定性较好。

  • 3.3.1 五唑金属盐预测

    3.3.1

    与Na元素类似的碱金属Li,很可能成为下一个构建新型五唑材料的金属阳离子。吉林大学马琰铭课题[47]利用理论预测LiN5的结构,基于Born‑Haber热化学循环原理,他们认为Li+离子具有很强的电子亲和能,能够在配合物结构中起到稳定作用。并且Li+离子和cycloN5-环通过这种稳定化作用可以提高活化能,从而有助于在常压下合成LiN5化合物。

    同样碱金属的K和Rb元素,Oleynik[48,49]等通过USPEX第一性原理计算的方法来预测RxNy(R=K、Rb)在高压条件下可能存在的多氮结构。在0~100 GPa的压力下,发现三种五唑结构:(1)在15 GPa压力下,预测出现KN5Pca21晶体结构;(2)在50 GPa压力下,预测出现K2N5Pmma晶体结构;(3)在大于15 GPa压力,预测出现RbN5Pc晶体结构。总体来说,碱金属RxNy(R=K、Rb、Cs)的五唑结构在15 GPa的压力以上都属于稳定结构,要在常温常压下合成还具有一定难度。

  • 3.3.2 五唑非金属盐预测

    3.3.2

    cycloN5-离子的发现为全氮材料的研制提供了基础,极大激发了含能材料科研工作者对全氮材料的研究热情。南京理工大学陆明课题[50]对一些经典含能阳离子五唑化合物进行了理论计算,结果如表2所示。由于阴离子为全氮五唑离子,这些非金属盐具有较高的氮含量,但是这类阳离子中含有C原子和较多的H原子,因此氧平衡都较差。根据计算,该类cycloN5-非金属盐的理论密度都很低,介于1.60~1.78 g·cm‑3,尽管这些盐具有较高的生成焓,预测的理论爆轰性能与传统高能炸药相比并没有明显优势。

    表 2 高氮五唑非金属盐计[50]

    Table 2 Caculation of non‑metallic pentazolate salts[50]

    cationsN contenta) / %OBb) / %densityc) / g·cm-3ΔHfd) / kJ·mol-1GaussianExplo 5
    De) / km·s-1pf) / GPaD / km·s-1p / GPa
    html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image016.png86.1-61.51.60186.96.2916.37.6918.8
    html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image017.png89.7-41.11.66615.58.1826.98.6327.1
    html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image018.png90.1-42.11.70690.48.2529.28.7129.9
    html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image019.png82.4-65.91.67410.57.0421.07.8822.5
    html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image020.png70.0-32.01.78513.58.2329.88.8531.3
    html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image021.png80.8-15.41.71262.28.8933.99.3935.4
    表 2
                    高氮五唑非金属盐计算[50]

    a) Nitrogen content. b) Oxygen balance. c) Calculated density. d) Calculated Heat of formation. e) Detonation velocity. f) Detonation pressure.

  • 4 总结与展望

    4

    直到2017年我国科学家在国际上首次成功合成出室温能稳定存在的cycloN5-盐,目前该领域已经拓展到cycloN5-金属盐、非金属盐等多种新型材料、以及高压合成等新型合成方法。通过对上述五唑化合物合成的进展和现状进行系统梳理和总结,我们得到如下结论:

    (1) 五唑离子(cycloN5-)具有环状芳香性和对称性的结构,是在室温下能稳定存在的全氮物质。以芳基五唑作为中间体,用氧化的方式来切断C—N键并且完整保留五唑环,第一次证明了五唑化合物能够在室温下稳定存在。不过该方法有着产率低,中间体不稳定、机理尚不清晰等问题,还需进一步研究改进。

    (2) cycloN5-环上有五个相同的N原子,即有五个相同的配位点,其配位模式多样,可与金属离子形成不同维度的骨架结构,理论上可构造出无数种金属五唑骨架材料,从而为合成稳定的新型含能配合物提供了可能。

    (3) 理论上,五唑离子化合物含有较多的N—N、N N键,断裂能够释放出大量能量;而目前合成的五唑离子盐中含有大量水分子和金属离子,其真实能量水平与高能量密度材料(HEDMs)相比尚有较大差距。然而我们也应该看到,cycloN5-作为重要的全氮阴离子,其应用基础研究才刚刚拉开帷幕,还有广阔的空间等待人们去探索研究。

  • 参考文献

    • 1

      李玉川, 庞思平.全氮型超高能含能材料研究进展[J]. 火炸药学报, 2012, 35(1): 1-8.

      LI Yu‑chuan, PANG Si‑ping. Progress of all‑nitrogen ultrahigh‑energetic materials[J]. Chinese Journal of Explosive & Propellants, 2012, 35(1): 1-8.

    • 2

      卢艳华, 何金选, 雷晴, 等.全氮化合物研究进展[J]. 化学推进剂与高分子材料, 2013, 2(3): 28-34.

      LU Yan‑hua, HE Jin‑xuan, Lei Qing, et al. Research progress in all‑nitrogen compounds[J]. Chemical Propellants & Polymeric Materials, 2013, 2(3): 28-34.

    • 3

      Zarko V E. Searching for ways to create energetic materials based on polynitrogen compounds (review)[J]. Combustion Explosion & Shock Waves, 2010, 46(2): 121-131.

    • 4

      Wodtke A M. All‑nitrogen chemistry: how far are we from N60?[J]. International Reviews in Physical Chemistry, 2006, 25(4): 527-552.

    • 5

      Nguyen M T, Mcginn M A, Hegarty A F, et al. Can the pentazole anion (N5) be isolated and/or trapped in metal complexes?[J]. Polyhedron, 1985, 4(10): 1721-1726.

    • 6

      Blanco F, Alkorta I, Elguero J. The structure of alkali metal derivatives of azoles: N‑sigma versus pi structures[J]. Journal of Physical Chemistry A, 2008, 112(33): 7682.

    • 7

      Christe K O, Wilson W W, Sheehy J A, et al. N5+: A novel homoleptic polynitrogen ion as a high energy density material[J]. Angewante Chemie International Edtion, 1999, 111: 2112-2118.

    • 8

      Ashwani V, William W W, Vandana V, et al. Polynitrogen chemistry. synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+[J]. Journal of the American Chemical Society, 2001, 32(40): 6308-6313.

    • 9

      William W. W, Ashwani V, Vandana V, et al. Polynitrogen chemistry: preparation and characterization of (N5)2SnF6, N5SnF5, and N5B(CF3)4[J]. Chemistry, 2003, 9(12): 2839-2844.

    • 10

      Ralf H, Stefan S, Thorsten S, Christe K O. High‑energy‑density materials: Synthesis and characterization of N5+P(N3)6-, N5+B(N3)4-, N5+HF2-·nHF, N5+BF4, N5+PF6-, and N5+SO3F-[J]. Angewante Chemie International Edtion, 2004, 116(37): 5027-5032.

    • 11

      Cacace F, De P G, Troiani A. Experimental detection of tetranitrogen[J]. Science, 2002, 295(5554): 480-481.

    • 12

      Hansen N, Wodtke A M. Velocity map ion imaging of chlorine azide photolysis: Evidence for photolytic production of cyclic‑N3[J]. Journal of Physical Chemistry A, 2003, 107(49): 10608-10614.

    • 13

      Samartzis P C, Lin J J, Ching T T, et al. Two photoionization thresholds of N3 produced by ClN3 photodissociation at 248 nm: further evidence for cyclic N3[J]. Journal of Chemical Physics, 2005, 123(5): 2177.

    • 14

      Hansen N, Wodtke A M, Goncher S J, et al. Photofragment translation spectroscopy of ClN3 at 248 nm: Determination of the primary and secondary dissociation pathways[J]. Journal of Chemical Physics, 2005, 123(10): 104305.

    • 15

      Wodtke A M, Hansen N, Robinson J C, et al. The Cl to NCl branching ratio in 248‑nm photolysis of chlorine azide[J]. Chemical Physics Letters, 2004, 391(4): 334-337.

    • 16

      Chen J, Lei W, Li C, et al. Flexible quantum dot sensitized solar cell by electrophoretic deposition of CdSe quantum dots on ZnO nanorods[J]. Physical Chemistry Chemical Physics, 2011, 13(29): 13182-13184.

    • 17

      Samartzis P C, Hansen N, Wodtke A M. Imaging CIN(3) photodissociation from 234 to 280 nm[J]. Physical Chemistry Chemical Physics, 2006, 8(25): 2958-2963.

    • 18

      Hansen N, Wodtke A M, Komissarov A V, et al. Ion dissociation dynamics of the chlorine azide cation (ClN3+) investigated by velocity map imaging[J]. Journal of Chemical Physics, 2003, 118(23): 10485-10493.

    • 19

      Zhang P, Morokuma K, Wodtke A M. High‑level ab initio studies of unimolecular dissociation of the ground‑state N3 radical[J]. Journal of Chemical Physics, 2005, 122(1): 14106.

    • 20

      Babikov D, Kendrick B K, Zhang P, et al. Cyclic‑N3. II. Significant geometric phase effects in the vibrational spectra[J]. Journal of Chemical Physics, 2005, 122(4): 9740.

    • 21

      Babikov D, Zhang P, Morokuma K. Cyclic‑N3. I.An accurate potential energy surface for the ground doublet electronic state up to the energy of the 2A2/2B1 conical intersection[J]. Journal of Chemical Physics, 2004, 121(14): 6743-6749.

    • 22

      Fau S, K W J Bartlett R J. On the stability of N5+N5-[J]. Journal of Physical Chemistry A, 2002, 106(18): 725-737.

    • 23

      Glukhovtsev M N, Jiao H, Schleyer P R. Besides N(2), What is the most stable molecule composed only of nitrogen atoms?[J]. Inorganic Chemistry, 1996, 35(24): 7124.

    • 24

      Lein M, Frunzke J, Timoshkin A, et al. Iron bispentazole Fe(η5‑N5)2, a theoretically predicted high‑energy compound: Structure, bonding analysis, metal‑ligand bond strength and a comparison with the isoelectronic ferrocene[J]. Chemistry‑A European Journal, 2015, 7(19): 4155-4163.

    • 25

      Straka M, Pyykkö† P. One metal and forty nitrogens. Ab initio predictions for possible new high‑energy pentazolides[J]. Cheminform, 2004, 35(8): 8241-8249.

    • 26

      Huisgen R, Ugi I. Zur Lösung eines klassischen problems der organischen stickstoff‑chemie[J]. Angewante Chemie International Edtion, 1956, 68: 705-706.

    • 27

      Zhang C, Sun C, Hu B, et al. Synthesis and characterization of the pentazolate anion cyclo‑N5- in (N5)6(H3O)3(NH4)4Cl[J]. Science, 2017, 355(6323): 374.

    • 28

      Hantzsch A. Ueber diazoniumazide, Ar.N5[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1903, 36(2): 2056-2058.

    • 29

      Ivar U, Rolf H. Pentazole, II.die zerfallsgeschwindigkeit der aryl‑pentazole[J]. European Journal of Inorganic Chemistry, 1958, 91(3): 531-537.

    • 30

      Ivar U, Hans P, Liselotte B. Die reduktion von alkyl‑und aryl‑adiden mit alkalischem arsenit. Chemische Bericht, 1958, 91(11): 2330-2336.

    • 31

      Zhang C, Sun C, Hu B, Lu Ming. Investigation on the stability of multisubstituted arylpentazoles and the influence on the generation of pentazolate anion. Journal of Energetic Materials, 2016, 34(1): 103-111.

    • 32

      Ugi I, Huisgen R. Pentzole Ⅱ, die zerfallsgeschwindigkeit der aryl‑pentazole[J]. Chemische Berichte, 1961, 91: 531-537.

    • 33

      Peter C, Henrik A Ö, Tore B.The stability of arylpentazoles[J]. Journal of Physical Chemistry A, 2004, 108(36): 7463-7467.

    • 34

      Vij A, Pavlovich J G, Wilson W W, et al. Experimental detection of the pentazole anion[J]. Angewandte Chemie International Edition, 2002, 41(16): 3051-3054.

    • 35

      Butler R N, Stephens J C, Burke L A. First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: A new N‑dearylation of 1‑(p‑methoxyphenyl) pyrazoles, a 2‑(p‑methoxyphenyl) tetrazole and application of the methodology to 1‑(p‑methoxyphenyl)[J]. Chemical Communications, 2003, 34(31): 1016-1017.

    • 36

      Bazanov B, Geiger U, Carmieli R, et al. Detection of cyclo‑N5- in THF Solution[J]. Angewandte Chemie International Edition, 2016, 55(42): 13233-13235.

    • 37

      Xu Y, Lin Q, Wang P, et al. Stabilization of the pentazolate anion in three anhydrous and metal‑free energetic salts (N5-)2DABTT2+, N5-GU+, and N5-Oxahy[J]. Chemistry An Asian Journal, 2018, 13(8): 924-928.

    • 38

      Xu Y, Wang Q, Shen C, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549(7670): 78-81.

    • 39

      Xu Y, Wang P, Lin Q, et al. A carbon‑free inorganic‑metal complex consisting of an all‑nitrogen pentazole anion, a Zn(ii) cation and H2O[J]. Dalton Transactions, 2017, 46: 14088-14093.

    • 40

      Zhang C, Yang C, Hu B, et al. A symmetric Co(N5)2(H2O)4·4H2O high‑nitrogen compound formed by Cobalt(II) cation trapping of a cyclo‑N5- anion[J]. Angewandte Chemie International Edition, 2017, 56(16): 4512-4514.

    • 41

      Xu Y, Lin Q, Wang P, et al. Syntheses, crystal structures and properties of a series of 3D metal‑inorganic frameworks containing pentazolate anion. Chemistry An Asian Journal, 2018, doi: 10.1002/asia.201800476.

    • 42

      Sun C, Zhang C, Jiang C, et al. Synthesis of AgN5 and its extended 3D energetic framework[J]. Nature Communications, 2018, 9(1): 1269.

    • 43

      Zhang Q, Zhang W, Wang K, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages[J]. Angewandte Chemie International Edition, 2018, 57(10): 2592-2595.

    • 44

      Christe K O. Polynitrogen chemistry enters the ring[J]. Science, 2017, 355(6323): 351.

    • 45

      Steele B A, Stavrou E, Crowhurst J C, et al. High‑pressure synthesis of a pentazolate salt[J]. Chemistry of Materials, 2017, 29(2): 735-741.

    • 46

      Yu T, Ma Y, Lai W, et al. Roads to pentazolate anion: a theoretical insight[J]. R. Soc. open sci, 2018, 5: 172269.

    • 47

      Peng F, Yao Y, Liu H, et al. Crystalline LiN5 predicted from first‑principles as a possible high‑energy material[J]. Journal of Physical Chemistry Letters, 2015, 6(12): 2363-2366.

    • 48

      Steele B A, Oleynik I I. Novel potassium polynitrides at high pressures[J]. Journal of Physical Chemistry A, 2017, 121(46): 8955-8961.

    • 49

      Williams A S, Steele B A, Oleynik I I. Novel rubidium poly‑nitrogen materials at high pressure[J]. Journal of Chemical Physics, 2017, 147(23): 234701.

    • 50

      陆明.对全氮阴离子N5-非金属盐能量水平的认识[J]. 含能材料, 2017, 25(7): 530-532.

      LU Ming. Opinion on the energy level of metal‑free pentazolate salts[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(7): 530-532.

李珏成

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China

邮 箱:jli412616@163.com

作者简介:李珏成(1993-),男,硕士研究生,主要从事含能材料研究。e‑mail:jli412616@163.com

靳云鹤

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China

邓沐聪

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China

张文全

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China

角 色:通讯作者

Role: Corresponding author

邮 箱:cn@caep.cn

作者简介:张文全(1986-),男,副研究员,主要从事含能材料研究。e‑mail:zhangwq‑cn@caep.cn

张庆华

机 构:中国工程物理研究院化工材料研究所, 四川 绵阳 621999

Affiliation:Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China

角 色:通讯作者

Role: Corresponding author

邮 箱:qinghuazhang@caep.cn

作者简介:张庆华(1979-),男,研究员,主要从事新型含能材料应用基础研究。e‑mail:qinghuazhang@caep.cn

html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image002.png
compoundstructuretemperature
-70 ℃ / d-30 ℃ / d-20 ℃ / d-10 ℃ / h
1html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image003.pnglong‑term storage≥30≤102-6
2html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image004.pnglong‑term storage≥30≥205-10
3html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image005.pnglong‑term storage≥60≥308-12
4html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image006.pnglong‑term storage≥60≥30≥12
5html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image007.pnglong‑term storage≥30≤30-1
6html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image008.png<2inexistenceinexistenceinexistence
html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image009.png
html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image013.png
html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image015.png
cationsN contenta) / %OBb) / %densityc) / g·cm-3ΔHfd) / kJ·mol-1GaussianExplo 5
De) / km·s-1pf) / GPaD / km·s-1p / GPa
html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image016.png86.1-61.51.60186.96.2916.37.6918.8
html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image017.png89.7-41.11.66615.58.1826.98.6327.1
html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image018.png90.1-42.11.70690.48.2529.28.7129.9
html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image019.png82.4-65.91.67410.57.0421.07.8822.5
html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image020.png70.0-32.01.78513.58.2329.88.8531.3
html/hncl/CJEM2018191/media/43765f8e-6c0a-440e-885a-676dae13452b-image021.png80.8-15.41.71262.28.8933.99.3935.4

图1 芳基五唑在0 ℃甲醇中分解速率[32]

Fig.1 Decomposition rate of arylpentazoles in methyl alcohol at 0 [32]

表 1 芳基五唑不同温度下分解速率[31]

Table 1 Decomposition rate of arylpentazoles at several temperatures[31]

图2 质谱检测五唑信[34]

Fig.2 Mass spectrum signal of pentazoles[34]

图3 (N5)6(H3O)3(NH4)4Cl晶体结[27]

Fig.3 Crystal structures of (N5)6(H3O)3(NH4)4Cl[27]

图4 目前部分已知五唑盐晶体结[38,39,40,41,42]

Fig.4 Several crystal structures of known pentazolate salts[38,39,40,41,42]

表 2 高氮五唑非金属盐计[50]

Table 2 Caculation of non‑metallic pentazolate salts[50]

image /

无注解

无注解

无注解

无注解

无注解

a) Nitrogen content. b) Oxygen balance. c) Calculated density. d) Calculated Heat of formation. e) Detonation velocity. f) Detonation pressure.

  • 参考文献

    • 1

      李玉川, 庞思平.全氮型超高能含能材料研究进展[J]. 火炸药学报, 2012, 35(1): 1-8.

      LI Yu‑chuan, PANG Si‑ping. Progress of all‑nitrogen ultrahigh‑energetic materials[J]. Chinese Journal of Explosive & Propellants, 2012, 35(1): 1-8.

    • 2

      卢艳华, 何金选, 雷晴, 等.全氮化合物研究进展[J]. 化学推进剂与高分子材料, 2013, 2(3): 28-34.

      LU Yan‑hua, HE Jin‑xuan, Lei Qing, et al. Research progress in all‑nitrogen compounds[J]. Chemical Propellants & Polymeric Materials, 2013, 2(3): 28-34.

    • 3

      Zarko V E. Searching for ways to create energetic materials based on polynitrogen compounds (review)[J]. Combustion Explosion & Shock Waves, 2010, 46(2): 121-131.

    • 4

      Wodtke A M. All‑nitrogen chemistry: how far are we from N60?[J]. International Reviews in Physical Chemistry, 2006, 25(4): 527-552.

    • 5

      Nguyen M T, Mcginn M A, Hegarty A F, et al. Can the pentazole anion (N5) be isolated and/or trapped in metal complexes?[J]. Polyhedron, 1985, 4(10): 1721-1726.

    • 6

      Blanco F, Alkorta I, Elguero J. The structure of alkali metal derivatives of azoles: N‑sigma versus pi structures[J]. Journal of Physical Chemistry A, 2008, 112(33): 7682.

    • 7

      Christe K O, Wilson W W, Sheehy J A, et al. N5+: A novel homoleptic polynitrogen ion as a high energy density material[J]. Angewante Chemie International Edtion, 1999, 111: 2112-2118.

    • 8

      Ashwani V, William W W, Vandana V, et al. Polynitrogen chemistry. synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+[J]. Journal of the American Chemical Society, 2001, 32(40): 6308-6313.

    • 9

      William W. W, Ashwani V, Vandana V, et al. Polynitrogen chemistry: preparation and characterization of (N5)2SnF6, N5SnF5, and N5B(CF3)4[J]. Chemistry, 2003, 9(12): 2839-2844.

    • 10

      Ralf H, Stefan S, Thorsten S, Christe K O. High‑energy‑density materials: Synthesis and characterization of N5+P(N3)6-, N5+B(N3)4-, N5+HF2-·nHF, N5+BF4, N5+PF6-, and N5+SO3F-[J]. Angewante Chemie International Edtion, 2004, 116(37): 5027-5032.

    • 11

      Cacace F, De P G, Troiani A. Experimental detection of tetranitrogen[J]. Science, 2002, 295(5554): 480-481.

    • 12

      Hansen N, Wodtke A M. Velocity map ion imaging of chlorine azide photolysis: Evidence for photolytic production of cyclic‑N3[J]. Journal of Physical Chemistry A, 2003, 107(49): 10608-10614.

    • 13

      Samartzis P C, Lin J J, Ching T T, et al. Two photoionization thresholds of N3 produced by ClN3 photodissociation at 248 nm: further evidence for cyclic N3[J]. Journal of Chemical Physics, 2005, 123(5): 2177.

    • 14

      Hansen N, Wodtke A M, Goncher S J, et al. Photofragment translation spectroscopy of ClN3 at 248 nm: Determination of the primary and secondary dissociation pathways[J]. Journal of Chemical Physics, 2005, 123(10): 104305.

    • 15

      Wodtke A M, Hansen N, Robinson J C, et al. The Cl to NCl branching ratio in 248‑nm photolysis of chlorine azide[J]. Chemical Physics Letters, 2004, 391(4): 334-337.

    • 16

      Chen J, Lei W, Li C, et al. Flexible quantum dot sensitized solar cell by electrophoretic deposition of CdSe quantum dots on ZnO nanorods[J]. Physical Chemistry Chemical Physics, 2011, 13(29): 13182-13184.

    • 17

      Samartzis P C, Hansen N, Wodtke A M. Imaging CIN(3) photodissociation from 234 to 280 nm[J]. Physical Chemistry Chemical Physics, 2006, 8(25): 2958-2963.

    • 18

      Hansen N, Wodtke A M, Komissarov A V, et al. Ion dissociation dynamics of the chlorine azide cation (ClN3+) investigated by velocity map imaging[J]. Journal of Chemical Physics, 2003, 118(23): 10485-10493.

    • 19

      Zhang P, Morokuma K, Wodtke A M. High‑level ab initio studies of unimolecular dissociation of the ground‑state N3 radical[J]. Journal of Chemical Physics, 2005, 122(1): 14106.

    • 20

      Babikov D, Kendrick B K, Zhang P, et al. Cyclic‑N3. II. Significant geometric phase effects in the vibrational spectra[J]. Journal of Chemical Physics, 2005, 122(4): 9740.

    • 21

      Babikov D, Zhang P, Morokuma K. Cyclic‑N3. I.An accurate potential energy surface for the ground doublet electronic state up to the energy of the 2A2/2B1 conical intersection[J]. Journal of Chemical Physics, 2004, 121(14): 6743-6749.

    • 22

      Fau S, K W J Bartlett R J. On the stability of N5+N5-[J]. Journal of Physical Chemistry A, 2002, 106(18): 725-737.

    • 23

      Glukhovtsev M N, Jiao H, Schleyer P R. Besides N(2), What is the most stable molecule composed only of nitrogen atoms?[J]. Inorganic Chemistry, 1996, 35(24): 7124.

    • 24

      Lein M, Frunzke J, Timoshkin A, et al. Iron bispentazole Fe(η5‑N5)2, a theoretically predicted high‑energy compound: Structure, bonding analysis, metal‑ligand bond strength and a comparison with the isoelectronic ferrocene[J]. Chemistry‑A European Journal, 2015, 7(19): 4155-4163.

    • 25

      Straka M, Pyykkö† P. One metal and forty nitrogens. Ab initio predictions for possible new high‑energy pentazolides[J]. Cheminform, 2004, 35(8): 8241-8249.

    • 26

      Huisgen R, Ugi I. Zur Lösung eines klassischen problems der organischen stickstoff‑chemie[J]. Angewante Chemie International Edtion, 1956, 68: 705-706.

    • 27

      Zhang C, Sun C, Hu B, et al. Synthesis and characterization of the pentazolate anion cyclo‑N5- in (N5)6(H3O)3(NH4)4Cl[J]. Science, 2017, 355(6323): 374.

    • 28

      Hantzsch A. Ueber diazoniumazide, Ar.N5[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1903, 36(2): 2056-2058.

    • 29

      Ivar U, Rolf H. Pentazole, II.die zerfallsgeschwindigkeit der aryl‑pentazole[J]. European Journal of Inorganic Chemistry, 1958, 91(3): 531-537.

    • 30

      Ivar U, Hans P, Liselotte B. Die reduktion von alkyl‑und aryl‑adiden mit alkalischem arsenit. Chemische Bericht, 1958, 91(11): 2330-2336.

    • 31

      Zhang C, Sun C, Hu B, Lu Ming. Investigation on the stability of multisubstituted arylpentazoles and the influence on the generation of pentazolate anion. Journal of Energetic Materials, 2016, 34(1): 103-111.

    • 32

      Ugi I, Huisgen R. Pentzole Ⅱ, die zerfallsgeschwindigkeit der aryl‑pentazole[J]. Chemische Berichte, 1961, 91: 531-537.

    • 33

      Peter C, Henrik A Ö, Tore B.The stability of arylpentazoles[J]. Journal of Physical Chemistry A, 2004, 108(36): 7463-7467.

    • 34

      Vij A, Pavlovich J G, Wilson W W, et al. Experimental detection of the pentazole anion[J]. Angewandte Chemie International Edition, 2002, 41(16): 3051-3054.

    • 35

      Butler R N, Stephens J C, Burke L A. First generation of pentazole (HN5, pentazolic acid), the final azole, and a zinc pentazolate salt in solution: A new N‑dearylation of 1‑(p‑methoxyphenyl) pyrazoles, a 2‑(p‑methoxyphenyl) tetrazole and application of the methodology to 1‑(p‑methoxyphenyl)[J]. Chemical Communications, 2003, 34(31): 1016-1017.

    • 36

      Bazanov B, Geiger U, Carmieli R, et al. Detection of cyclo‑N5- in THF Solution[J]. Angewandte Chemie International Edition, 2016, 55(42): 13233-13235.

    • 37

      Xu Y, Lin Q, Wang P, et al. Stabilization of the pentazolate anion in three anhydrous and metal‑free energetic salts (N5-)2DABTT2+, N5-GU+, and N5-Oxahy[J]. Chemistry An Asian Journal, 2018, 13(8): 924-928.

    • 38

      Xu Y, Wang Q, Shen C, et al. A series of energetic metal pentazolate hydrates[J]. Nature, 2017, 549(7670): 78-81.

    • 39

      Xu Y, Wang P, Lin Q, et al. A carbon‑free inorganic‑metal complex consisting of an all‑nitrogen pentazole anion, a Zn(ii) cation and H2O[J]. Dalton Transactions, 2017, 46: 14088-14093.

    • 40

      Zhang C, Yang C, Hu B, et al. A symmetric Co(N5)2(H2O)4·4H2O high‑nitrogen compound formed by Cobalt(II) cation trapping of a cyclo‑N5- anion[J]. Angewandte Chemie International Edition, 2017, 56(16): 4512-4514.

    • 41

      Xu Y, Lin Q, Wang P, et al. Syntheses, crystal structures and properties of a series of 3D metal‑inorganic frameworks containing pentazolate anion. Chemistry An Asian Journal, 2018, doi: 10.1002/asia.201800476.

    • 42

      Sun C, Zhang C, Jiang C, et al. Synthesis of AgN5 and its extended 3D energetic framework[J]. Nature Communications, 2018, 9(1): 1269.

    • 43

      Zhang Q, Zhang W, Wang K, et al. Stabilization of the pentazolate anion in a zeolitic architecture with Na20N60 and Na24N60 nanocages[J]. Angewandte Chemie International Edition, 2018, 57(10): 2592-2595.

    • 44

      Christe K O. Polynitrogen chemistry enters the ring[J]. Science, 2017, 355(6323): 351.

    • 45

      Steele B A, Stavrou E, Crowhurst J C, et al. High‑pressure synthesis of a pentazolate salt[J]. Chemistry of Materials, 2017, 29(2): 735-741.

    • 46

      Yu T, Ma Y, Lai W, et al. Roads to pentazolate anion: a theoretical insight[J]. R. Soc. open sci, 2018, 5: 172269.

    • 47

      Peng F, Yao Y, Liu H, et al. Crystalline LiN5 predicted from first‑principles as a possible high‑energy material[J]. Journal of Physical Chemistry Letters, 2015, 6(12): 2363-2366.

    • 48

      Steele B A, Oleynik I I. Novel potassium polynitrides at high pressures[J]. Journal of Physical Chemistry A, 2017, 121(46): 8955-8961.

    • 49

      Williams A S, Steele B A, Oleynik I I. Novel rubidium poly‑nitrogen materials at high pressure[J]. Journal of Chemical Physics, 2017, 147(23): 234701.

    • 50

      陆明.对全氮阴离子N5-非金属盐能量水平的认识[J]. 含能材料, 2017, 25(7): 530-532.

      LU Ming. Opinion on the energy level of metal‑free pentazolate salts[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2017, 25(7): 530-532.