文章编号:1006-9941(2021)09-0790-08

CL-20/DMMD 共晶炸药的制备与表征

孙康波^{1,2},张树海²,郝永平¹,霸书红¹,姜夏冰¹ (1. 沈阳理工大学装备工程学院,辽宁 沈阳 110159;2. 中北大学环境与安全工程学院,山西太原 030051)

摘 要: 通过溶液共晶法制备得六硝基六氮杂异伍兹烷(CL-20)与二硝基二氮杂戊烷(DMMD)的共晶炸药CL-20/DMMD。采用 X 射线单晶衍射(SCXRD)、扫描电镜(SEM)、X 射线粉末衍射(PXRD)、傅里叶红外光谱(FT-IR)、差式扫描量热法(DSC)对其进行测试及表征。结果表明该晶体为单斜晶系, P2,/c空间群, 分子间以氢键为主要作用力并形成层状结构。PXRD表明CL-20与DMMD 之间有新的晶相生成, FT-IR表明CL-20/DMMD部分衍射峰发生偏移的原因是产生了氢键作用。DSC显示CL-20/DMMD共晶熔 点为180.8 ℃, 比 CL-20和DMMD的熔点分别提高了 21.5 ℃和120.9 ℃; 其主要热分解峰为 240.1 ℃, 比 CL-20增加了 3.5 ℃。根据 Rothstein和Petersen理论预测爆速和爆压分别是 9255 m·s⁻¹和41.08 GPa, 较 CL-20的爆速 9386 m·s⁻¹, 爆压 45.09 GPa 均略微 下降, 较 DMMD的爆速 7287 m·s⁻¹, 爆压 21.79 GPa、奥克托今(HMX)的爆速 9048 m·s⁻¹, 爆压 40.55 GPa、黑素今(RDX)的爆速 8945 m·s⁻¹, 爆压 37.28 GPa、梯恩梯(TNT)的爆速 7042 m·s⁻¹, 爆压 21.44 GPa有所提高。

关键词:共晶炸药;六硝基六氮杂异伍兹烷(CL-20);二硝基二氮杂戊烷(DMMD);制备;表征
 中图分类号: TJ55
 文献标志码: A

DOI:10.11943/CJEM2020226

1 引言

共晶的首次研究1844年出现,详实报道在1978 年^[1]。共晶技术主要应用是在药物共晶领域、材料领 域、光学领域等^[2]。随着共晶技术^[3]的不断发展,此技 术逐渐应用到含能材料领域,虽然共晶在含能材料领 域的研究刚刚起步,还有很多空白和不足,但已经显现 出巨大的潜力和应用价值。含能共晶技术是在分子水 平上改变含能化合物之间的非共价键作用,从本质上 调控含能材料的结构性能,拓展了含能材料的应用 范围^[1,4-5]。

六硝基六氮杂异伍兹烷(CL-20),是多环硝胺化 合物,使它具有优异的性能^[6],当前已实现批量合成的 能量水平最高的高能量、高密度化合物,是一种综合能 力良好的炸药。研究表明,CL-20能量高于奥克托今

收稿日期: 2020-08-18;修回日期: 2021-01-20

网络出版日期: 2021-06-30

作者简介:孙康波(1976-),女,讲师,主要从事含能材料制备及合成技术研究。e-mail:382857444@qq.com

通信联系人:孙康波(1976-),女,讲师,主要从事含能材料制备及 合成技术研究。e-mail:382857444@qq.com (HMX), 较 HMX 敏感, 其摩擦感度和撞击感度与 HMX、黑索今(RDX)相当^[7]。爆发点低于HMX,高于 RDX及太安(PETN);其静电火花感度与HMX、PETN 接近。与HMX相比,以CL-20为基的炸药的能量高, 但是CL-20的感度高、成本高,且在极性溶剂中溶解度 大,限制了其广泛应用。目前,对CL-20降感的研究主 要有四种方法:一是设计和合成新的炸药[8],二是将炸 药颗粒细化至纳米级别^[9];三是钝化,通过采用不同的 结晶工艺、加入合适的添加剂制备形貌规整、无尖锐棱 角的晶体颗粒^[10-11]、利用低感材料对CL-20进行包 覆^[12];四是通过共晶技术,将炸药进行改性^[13]。共晶 含能材料的研究已经成为近年来的研究热点,已经报 道的共晶含能材料约60种^[14],其中,对以CL-20为基 的含能共晶炸药研究最为广泛和深入。如CL-20与 1,1-二氨基-2,2-二硝基乙烯(FOX-7^[15])、TNT^[16]、 HMX^[17]、3,4-二硝基苯吡啶(DNP^[18])、苯甲醛(benzaldehyde^[19])、1,3二硝基苯(DNB^[20])、1,3,5-三氨 基-2,4,6-三硝基苯(TATB^[21-22])等共晶炸药,研究人 员对炸药共晶的形成原理、共晶组分的筛选和制备、表 征及性能测定等方面进行了研究,验证了共晶制备的 可行性。通过对含能材料共晶在热力学[16.23-28]、溶剂

引用本文:孙康波,张树海,郝永平,等. CL-20/DMMD 共晶炸药的制备与表征[J]. 含能材料,2021,29(9):790-797. SUN Kang-bo, ZHANG Shu-hai, HAO Yong-ping, et al. Preparation and Characterization of CL-20/DMMD Co-crystal Explosive[J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*),2021,29(9):790-797.

Chinese Journal of Energetic Materials, Vol.29, No.9, 2021 (790-797)

对共晶炸药影响^[29-31]等方面的研究,确定影响共晶形成及稳定存在的主要因素。因此,随着共晶研究的不断深入,有望在实验室少量制备的基础上,探索工业化生产的途径,拓宽炸药共晶的应用领域^[17]。

二硝基二氮杂戊烷(DMMD)是新型线性二硝胺 类含能材料的典型代表,具有结构对称、热稳定性 好^[32]、感度低的特点。选择 DMMD 与 CL-20 共晶,是 因为它在共晶体中的比重较小,对 CL-20 爆炸性能影 响较小;其次,两者都为硝胺炸药,热安定性可以满足 预期要求;第三,在不显著降低能量并改善其安全性能 的前提下,使 CL-20 与 DMMD 能够形成具有独特结构 的新型含能材料晶体,从而扩展 CL-20 的应用范围,可 为共晶技术的发展提供参考。

为此,本研究基于共晶原理,采用溶液共晶技术, 结合双层透明结晶器装置,制备出了CL-20与DMMD 共晶炸药,对其结构、形貌、热性能进行详细研究并预 测了CL-20/DMMD共晶炸药的爆轰性能。

2 实验部分

2.1 试剂与仪器

ε-CL-20, 辽宁庆阳特种化工有限公司; DMMD, 黎明化工研究院; 乙醇, 分析纯, 天津市致远化学试剂 有限公司; 单晶衍射仪, Bruck smart 1000 CCD, 德国 西门子公司; 傅里叶红外变换光谱仪 IRAffinty-1S, 日 本岛津公司; X射线衍射仪 ULtimalV 系列, 日本岛津 公司; 扫描电子显微镜 SU1510, 日本日立高新技术公 司; 光学体视显微镜, zeiss, Discovery.20, 结晶器, 盐 城市川腾玻璃仪器有限公司; 恒温水浴锅, 巩义市予华 仪器有限责任公司; 磁力搅拌器, 上海雷磁。

共晶实验装置如图1所示。

图1 CL-20/DMMD共晶制备装置图
1一磁力搅拌器,2一结晶器,3一恒温水浴锅
Fig.1 Setup for preparation of CL-20/DMMD co-crystal
1—magnetic stirrer, 2—crystallizer,
3—thermostat water bath

CHINESE JOURNAL OF ENERGETIC MATERIALS

2.2 实验过程

在 313 K恒温水浴条件下,将 2 mol 的 CL-20 和 1 mol 的 DMMD 溶 解 在乙 醇 溶剂中,先后加入到 300 mL结晶器内,开动磁力搅拌器,使其完全溶解(时 间约为1 h),形成无色透明的溶液。静止 4~5 h后观 察结晶器内的现象:共晶溶液在结晶器中逐渐出现小 晶粒,小颗粒逐渐长大,最终结晶。再恒温 10 d,直至 溶剂完全蒸发,所得物冷却至 10~15 ℃后,然后用乙 醇溶液清洗,过滤得到晶体,将获得的目标产物放入烘 箱中烘干1 h,收集备用。

2.3 表征测试

采用 Bruck smart 1000 CCD 对单晶结构进行衍 射分析,在293.15(2)K温度下,以石墨单色化的 Mo-K_a射线(λ =0.7107 Å)为辐射源和 ω , ψ 方式扫描, 3.142°≤θ≤27.548°扫描进行衍射数据收集衍射点进行 结构计算并采用 SHELXS-97 和 SHELXL-97 程序对结构 进行解析,然后利用最小二乘法修正这些结构,并用差 值 Fourier 合成并完善得到最后结构;采用扫描电子显 微镜(SEM)表征共晶的形貌,测试电压范围10~15 kV; 采用粉末 X 射线衍射仪, Cu K_α(λ=0.154056 Å)衍射 靶,电压40 V,步长0.03°,扫描速度0.4 s,收集2θ在 5°~60°之间的衍射数据;采用傅里叶红外光谱仪 (FT-IR)表征化学键和官能团,在500~4000 cm⁻¹范围, 分辨率为0.1 cm⁻¹下收集数据;采用差热扫描量热仪 (DSC)进行热分解性能分析,温度区间为0~300 ℃,升 温速率为在 10 ℃·min⁻¹,氮气流为 50 mL·min⁻¹, Al₂O₃坩埚,试样质量不超过3.0 mg。

3 结果与讨论

3.1 X-射线单晶衍射分析(SCXRD)

选取尺寸为 0.20 mm×0.20 mm×0.20 mm 的 CL-20/DMMD共晶晶体进行结构解析,解析的结构数 据如表1所示。

CL-20/DMMD 共晶衍射分子单元结构图和晶胞 堆积图见 2,由图 2可以看出,CL-20/DMMD 共晶结合 比是 2:1,沿 a轴和 c轴,CL-20 层与 DMMD 层交错。 从 b轴上看,可以观察到锯齿状的分子排列。

CL-20/DMMD 分子间非键距离如图 3 所示。 CL-20/DMMD 分子中的H(14A)、H(15C)与 DMMD中的O(3)、O(19)形成的非键距离分别是 0.2614 nm、0.2548 nm,小于氧原子与氢原子之间 的范德华半径之和(0.2720 nm)^[33-34]。这说明共晶

Table 1 Crystallographic data for CL-20/DMMD					
parameters	CL-20/DMMD	CL-20/DMMD			
formula	$C_{15}H_{20}N_{28}O_{28}$				
temperature / K	293.15				
stoichiometry	2:1				
space group	P 2 ₁ /c				
crytal system	monoclnicp				
a / Å	12.9853(11)				
<i>b</i> / Å	22.5824(15)				
<i>c</i> / Å	12.9397(12)				
α/(°)	90				
$m{eta}$ /(°)	104.664(3)				
γ / (°)	90				
Ζ	4				
$\rho/\text{g}\cdot\text{cm}^{-3}$	1.883				
V / Å ³	3670.85(5)				
<i>F</i> (000)	2119				
GOF	1.049				
$R_1, \omega R_2 [I > 2\delta(I)]$	0.0410, 0.1066				
$R_{1}, \omega R_{2} [I > 2\delta(I)]$	0.0472.0.1118				

W25 C15
025 2 N26
N27 010 N3 N4
09 N9 C1 01
C5 08 N7 N2 N6
028 012 N11 N8 C3 N1
021 023 06 06
017 N22 CB N16 N23 011
N18 N21 N21 016024
022 N17 C10 C12
018 C9 N13 014
N19 N14
013
(020 019
022 H7 C10 C12 018 C9 C7 H13 014 C H19 H14 013 N H20 020 020 019 013 O

a. molecular structure to CL-20/DMMD

c. packing of CL-20/DMMD crystal from *b* axis

图2 CL-20/DMMD共晶分子结构和晶胞堆积图

Fig.2 Molecular unit structure and packing of CL-20/DMMD co-crystal

内 CL-20 分子与 DMMD 分子之间形成了氢键, 且键 的类型为 C—H…O 氢键。在乙醇溶液中形成共晶 炸药时, 不同溶质分子间存在竞争作用, 分子间作 用力强的会优先吸附。因此, CL-20 与 DMMD 由于 氢键的作用较强, 会以非键力结合。氢键增加了分 子间的缔结程度, 具有饱和性和方向性, 形成以错 位方式面对面排列, 导致整个晶体排列紧密, 密度 为 1.883 g·cm⁻³, 比 CL-20/TNT 共晶炸药的密度 (1.840 g·cm⁻³)高^[35]。

3.2 CL-20/DMMD 共晶形貌

原料 CL-20、原料 DMMD 和 CL-20/DMMD 共晶的 SEM 图 4 所示。

由图4可以看出,CL-20与DMMD原料单质的分子晶形与CL-20/DMMD共晶分子的晶形明显不同。 CL-20晶体为棱锥形,DMMD为无规则形,CL-20/ DMMD共晶体为棱柱形,表明共晶技术能有效改变晶体的形貌,这样的外形结构会使晶体堆积密度高,流动 性好。

b. packing of CL-20/DMMD crystal from a axis

d. packing of CL-20/DMMD crystal from *c* axis

b. DMMD

图 4 CL-20、DMMD、CL-20/DMMD共晶扫描电镜图 Fig.4 SEM photographs of CL-20,DMMD, and CL-20/DMMD co-crystal

3.3 X射线粉末衍射分析(PXRD)

对所得样品的粉末 XRD 衍射曲线与 mercury^[36] 软件模拟共晶 CIF 文件得到的 XRD 衍射曲线进行分 析,结果如图 5 所示。

CL-20/DMMD 共晶与 CL-20、DMMD 的 XRD 衍 射曲线之间有明显不同。CL-20 的主要衍射峰在 2θ 为 12.640°, 13.860°, 30.380°, 此处 CL-20 的衍射峰位 置与 ε-CL-20 相符合。DMMD 衍射峰为 9.438°, 14.799°, 17.420°, 25.860°。CL-20/DMMD 的共晶主 要衍射峰为 9.438°, 14.152°, 16.235°, 谱图的衍射峰 发生了明显变化,并且在 2θ为 7.862°, 25.386°等处出 现了新的衍射峰, 这表明了 CL-20和 DMMD 形成了共 晶, 这与软件模拟的共晶衍射图谱的衍射峰的位置基 本一致, 这不仅说明制备所得的粉末已形成共晶, 而且 能够说明该粉末是纯度较高^[33]的 CL-20/DMMD 共晶。

图 5 CL-20、DMMD、CL-20/DMMD 共晶的 X 射线粉末衍射 图谱

Fig.5 Powder X-ray diffraction patterns of CL-20, DMMD, and CL-20/DMMD co-crystal

3.4 红外光谱分析(IR)

原料 CL-20、原料 DMMD 及 CL-20/DMMD 共晶的傅里叶红外光谱如图 6 所示。

图 6 CL-20、DMMD和CL-20/DMMD共晶红外曲线 Fig.6 Infrared curves of CL-20, DMMD, and CL-20/DMMD co-crystal

从图6可以看出,CL-20/DMMD共晶材料的红外 光谱图与CL-20的谱图的吻合度很高,很多吸收峰的 位置基本上重合,主要明显的区别是在高波数峰的消 失,低波数范围出现了一些新峰和偏移。在3449 cm⁻¹ 处为羟基伸缩振动峰,三个材料的吸收峰位置和强度 基本上没有发生明显的变化;3047、2922、2945、 3022 cm⁻¹ 处为 C — H 伸缩振动峰,相比 CL-20 和 DMMD 原材料在 2922 cm⁻¹和 2945 cm⁻¹的吸收峰, CL-20/DMMD 共晶材料的吸收峰为 3032 cm⁻¹, 向高 波数发生了移动,发生了蓝移,这可能是由于共结晶体 中形成了C-H…O氢键,使电子云密度平均化,从而 使得 C-H 伸 缩 振 动 吸 收 峰 的 波 数 发 生 了 偏 移。 1630、1621、1610、1532 cm⁻¹和1528 cm⁻¹的特征峰 由 NO₂不对称伸缩产生,1334 cm⁻¹的特征峰则是由 NO,对称伸缩得到的。通过CL-20/DMMD共晶与原 材料对比发现,共晶材料在1630 cm⁻¹处出现了比较 明显的吸收峰,同时峰位置也发生了一些移动,相较于 CL-20、DMMD 稍微有所改变,这都是由于共晶结构中 分子之间存在氢键等相互作用而产生的。1029 cm⁻¹、 1042 cm⁻¹处哌嗪环的平面弯曲振动,相比原材料,共 晶体发生了明显的蓝移,由1029 cm⁻¹移动到了 1042 cm⁻¹处,说明CL-20的哌嗪环结构周围的化学环 境情况有变化。从以上分析结果来看,可以初步推断 共晶体是与原料组分不同的。

3.5 差示扫描量热分析(DSC)

对原料 CL-20、原料 DMMD 及 CL-20/DMMD 共 晶的 DSC 曲线如图 7 所示。

图 7 CL-20, DMMD和CL-20/DMMD共晶的DSC曲线 Fig.7 DSC curves of CL-20, DMMD, and CL-20/DMMD co-crystal

由图7可以看出,CL-20、DMMD及CL-20/DMMD 共晶炸药热分解分别有两个阶段,包括一个吸热熔化 阶段和一个放热阶段。三种物质的熔点分别为 159.3 ℃、59.9 ℃、180.8 ℃。共晶的熔点相比于 DMMD的熔点 59.9 ℃提高 120.9 ℃,比 CL-20 的熔点 159.3 ℃提高 21.5 ℃,说明共晶的熔点有大幅度提 高。三种物质的放热峰分别 236.6、248.8 ℃以及 240.1 ℃;随着放热过程继续,共晶分子间作用力被破 坏,CL-20/DMMD 共晶分解放热峰的温度为 240.1 ℃,比 CL-20分解放热峰增加了 3.5 ℃,共晶形 成后温度增加的原因可能是有氢键在 CL-20 和 DMMD分子间形成,说明共晶材料的热性能发生了本 质上的改变,证明 CL-20/DMMD 共晶的生成。

3.6 共晶爆速爆压计算

根据 Rothstein 和 Petersen^[37]理论,对于理想的含 C,H,N,O元素的炸药来说,假设理论最大密度时的 爆速和仅决定于化学成分和结构的爆炸因子(F)之间 存在线性关系,则爆轰因子 F、爆速 D计算可由式(1)、 式(2)^[37]所示计算而得:

	$100(nO\pm nN)$	nH	_ A _	nB	nC	nD	nE	
F=		2nO	3	1.75	2.5	4	5	(1)
1 -			М					
D	$=\frac{F-0.26}{0.55}$							(2)

Kamlet和Abland^[38]经过计算机处理和大量实验 得出爆压计算如式(3)所示:

$\rho = \rho D^2 (1 - 0.713^{0.07})$	(3)
--------------------------------------	-----

式中,F为爆轰因子;D为爆速,m·s⁻¹;nO、nH、nN为 分子中氧、氢、氮原子的数目;nB为满足生成CO₂、 H₂O之后富裕的氧原子数目;nC为氧原子与碳原子形 成的双键数目;nD为氧原子与碳原子形成的单键数 目;nE为硝酸脂或硝酸盐硝基的数目;M为物质的分 子质量,g;A为芳香族化合物为1,否则为0;G为液体 炸药为0.4,固体炸药为0;p为爆轰产物的C-J压力, GPa;p为炸药的初始密度,g·cm⁻³。

原料 CL-20、DMMD 与 CL-20/DMMD 共晶以及 HMX、RDX 和 TNT 爆轰参数计算结果如表 2 所示。

由表 2 可以看出, CL-20/DMMD 共晶的密度介于 DMMD 和 CL-20 之间, 低于 HMX 的密度, 高于 RDX 和 TNT 的密度。其爆速比 CL-20 低 1.40%, 比 DMMD、HMX、RDX、TNT 分别高 27.01%、2.29%、 31.43%。爆压比 CL-20 低 8.90%, 比 DMMD、HMX、 RDX、TNT 分别高 88.53%、1.31%、10.19%、91.60%。

可见,CL-20/DMMD共晶保持了较好的爆轰性能,爆速和爆压与CL-20相比有所下降,但是和HMX、TNT、RDX炸药的爆轰参数比较起来,爆轰性能都有所提高。计算结果只是从理论计算方面进行性能比

较,也能充分说明CL-20/DMMD共晶有望成为一种 新型优质炸药。

表2 六种炸药的爆轰参数

 Table 2
 The detonation parameters of six kinds of explosives

model	$ ho_{\rm max}/{\rm g}\cdot{\rm cm}^{-3}$	$D / \mathbf{m} \cdot \mathbf{s}^{-1}$	p / GPa
DMMD	1.550	7287	21.79
CL-20	2.044	9386	45.09
CL-20/DMMD co-crystal	1.883	9255	41.08
HMX ^[39]	1.903	9048	40.55
RDX ^[39]	1.816	8945	37.28
TNT ^[39]	1.654	7042	21.44

Note: ρ_{max} is the maximum theoretical density, *D* is the theoretical detonation velocity velocity, *p* is the theoretical pressure.

4 结论

(1)采用溶液蒸发法制备得到 CL-20/DMMD 的 共晶炸药,结构分析表明该共晶由 CL-20 与 DMMD 以 2:1(摩尔比)通过氢键结合形成,属 P2₁/c晶系。

(2)CL-20/DMMD 共晶的形貌为棱柱状,具有明显不同于 CL-20 和 DMMD 的宏观形状,形成了新型 共晶。

(3)CL-20/DMMD 共晶的 XRD 衍射曲线有新峰 出现,证明有新物质即 CL-20/DMMD 共晶的生成; CL-20/DMMD 共晶的 FT-IR 光谱与原材料 CL-20 和 DMMD 的光谱相比,共晶的谱峰在氢键作用下发生了 偏移,这与 SCXRD 分析分子间作用力是氢键的结果一 致;CL-20/DMMD 共晶的 DSC 曲线熔点数据不同于 单组分熔点数据,较原材料 CL-20 提高了 3.5 ℃,分解 温度与两种单质原料 CL-20、DMMD 有明显区别。

(4) CL-20/DMMD 共晶爆速是 9255 m·s⁻¹, 爆压 是 41.08 GPa, 较 CL-20 均有所下降, 但爆轰性能接近 HMX。

致谢:感谢辽宁庆阳特种化工有限公司,为本实验提实验 场地和技术指导。

参考文献:

- [1] 豆蓉蓉, Zerraza-sofiane, 张教强,等.含能共晶技术研究进展
 [J].材料导报, 2017, 31(9): 90-96.
 DOU Rong-rong, Zerraza-sofiane, ZHANG Jiao-qiang, et al.
 Research progress of energetic cocrystal technology[J]. Materials Reports, 2017, 31(9): 90-96.
- [2] 赵波.简述共晶的研究及应用[J].广东化工,2014,41(20): 59+68.

ZHAO Bo. A brief talk on research and application of cocrysta

CHINESE JOURNAL OF ENERGETIC MATERIALS

[J]. Guangdong Chemical Industry, 2014, 41(20): 59+68.

- [3] Thomas S J M. Crystal engineering: origins early adventures and some current trends[J]. *Cryst Eng Comm*, 2011, 13(13): 4304-4306.
- [4] 任晓婷, 卢艳华, 陆志猛, 等. 超细 CL-20/HMX 共晶的制备、表征及其与推进剂组分的相容性[J]. 含能材料, 2020, 28(2): 137-144.
 REN Xiao-ting, LU Yan-hua, LU Zhi-meng, et al. Preparation,

REN Xiao-ting, LU Yan-nua, LU Zhi-meng, et al. Preparation, characterization of ultrafine CL-20/HMX cocrystal explosive and its compatibility with the components of propellants [J]. *Chinese Journal of Energetic Materials* (*Hanneng Cailiao*), 2020, 28(2): 137–144.

[5] 费腾,来祺,张文瑾,等. CL-20制备结晶体研究进展[J]. 含能 材料, 2021, 299(4): 352-368.
FEI Teng, LAI Qi, ZHANG Wen-jin, et al. Research progress of synthesis and processing of CL-20[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2021, 29(4): 352-368.
[6] 陆明.炸药的分子与配方设计[M].北京:北京兵器工业出版社,

2004: 145. Lu Ming. Primary Investigations on the Molecular and Formulation Design of explosive[M]. Beijing: National Defense Industry Press, 2004: 145.

- [7] 宋小兰,王毅,宋朝阳,等. CL-20/DNT共晶炸药的制备及其性能研究[J].火炸药学报, 2016, 39(1): 23-27.
 SONG Xiao-lan, WANG Yi, SONG Zhao-yang, et al.Preparation of CL-20/DNT cocrystal explosive and study on its performance[J]. *Chinese Journal of Explosives & Propellants*, 2016, 39(1): 23-27.
- [8] 赵逸. CL-20 混合炸药的理论计算研究[D].北京:北京理工大学,2016.
 ZHAO Yi. Theoretical calculation of CL-20 mixed explosives
 [D]. Beijing: Beijing Institute of Technology, 2016.
- [9] 张朴, 郭学永, 张静元, 等. 机械研磨制备球形超细CL-20[J]. 含能材料, 2013, 21(6): 738-742.
 ZHANG Pu, GUO Xue-yong, ZHANG Jing-yuan, et al. Preparation of Spherical Ultrafine CL-20 by Mechanical grinding[J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2013, 21(6): 738-742.
- [10] 任晓婷,孙忠祥,曹一林.细粒度ε-CL-20的制备及钝化[J].火 炸药学报,2011,34(4):21-25.
 REN Xiao-ting, SUN Zhong-xiang, CAO Yi-lin. Preparation and Passivation of Fine ε-CL-20[J]. Chinese Journal of Explosives and Propellants, 2011, 34(4): 21-25.
- [11] 陈华雄,陈树森,金韶华,等.六硝基六氮杂异伍兹烷转晶中的 分子动力学模拟[J].火炸药学报,2007(5):1-4+84. CHEN Hua-xiong,CHEN Shu-sen,JIN Shao-hua, et al. Molecular dynamic simulation of the crystallization of HNIW[J]. Chinese Journal of Explosives and Propellants, 2007(5):1-4+84.
- [12] 邢江涛,徐文峥,王晶禹,等.丙烯酸酯橡胶对CL-20的包覆降感及改性[J].火炸药学报,2017,40(1):34-39.
 XING Jiang-tao, XU Wen-zheng, WANG Jing-yu, et al. Sensitivity reduction and modification of CL-20 coated with ACM
 [J]. Chinese Journal of Explosives and Propellants, 2017, 40 (1): 34-39.
- [13] 许达,吴晓青,卞成明,等.溶剂挥发法制备CL-20/LLM-105共 晶含能材料的研究[J].精细化工中间体,2018,48(6):57-60.
 XU Da, WU Xiao-qing, BIAN Cheng-ming, et al. Preparation of CL-20/LLM-105 co-crystal energetic materials by solvent

evaporation method [J]. *Fine Chemical Intermediates*, 2018, 48(6): 57–60.

- [14] 董海燕, 龙义强, 周婷婷, 等. CL-20/1, 4-DNI共晶形成的热力 学[J]. 含能材料, 2020, 28(9): 819-825.
 DONG Hai-yan, LONG Yi-qian, ZHOU Ting-ting, et al. Thermodynamic on the formation of CL-20/1, 4-DNI cocrystal[J].
 Chinese Journal of Energetic Materials (Hanneng Cailiao), 2020, 28(9): 819-825.
- [15] Hang G Y, Yu W L, Wang T, et al. Molecular dynamics calculation on structures, stabilities, mechanic lproperties, and energy density of CL-20/FOX-7 cocrystal explosives [J]. *Journal of Molecular Modeling*, 2017, 23(12): 362.
- [16] 王晶禹,李鹤群,安崇伟,等. 超细 CL-20/TNT 共晶炸药的喷雾 干燥制备与表征[J]. 含能材料, 2015, 23(11): 1103-1106.
 WANG Jing-yu, LI He-qun, AN Chong-wei, et al. Preparation and characterization of ultrafine CL-20/TNT cocrystal explosive by spray drying method [J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2015, 23(11): 1103-1106.
- Ghosh, Mrinal, Sikder, et al. Studies on CL-20/HMX (2:1)
 Cocrystal: A new preparation method andstructural and thermokinetic analysis [J]. Crystal Growth & Design, 2018, 18 (7): 3781-3793.
- [18] 罗念. CL-20/DNP共晶炸药的制备、表征及性能的研究[D].太原:中北大学,2016:19-50.
 LUO Nian. Study on Preparation, Characterization and Properties of CL-20/DNP Cocrystal Explosive [D]. Taiyuan: North University of China, 2016.
- [19] Bao L, Lv P, Fei T, et al.Crystal structure and explosive performance of a new CL-20/benzaldehyde cocrystal[J]. Journal of Molecular Structure, 2020, 1215:128267.
- [20] 王玉平.CL-20/DNB共晶炸药的制备、结构与性能研究[D].太原:中北大学,2014.
 WANG Yu-ping. Preparation, structure and properties of CL-20/DNB cocrystal Abstract[D]. Taiyuan: North University of China, 2014.
- [21] 文国,闻利群,杜耀,等.CL-20/TATB共晶的分子动力学模拟
 [J].山西化工,2014,34(1):17-20.
 WENG Guo, WEN Li-qun, DU yao, et al. Molecular dynamic simulation on co-crystal of CL-20/TATB[J]. Shanxi Chemical Industry, 2014, 34(1):17-20.
- [22] 宋小兰,王毅,赵珊珊,等.机械球磨法制备纳米CL-20/TATB 共晶炸药[J]. 兵器装备工程学报, 2018, 39(8): 146-151.
 SONG Xiao-lan, WANG Yi, ZHAO Shan-shan, et al. Nanometer CL-20/TATB co-crystal fabricatedby mechanical milling methodology[J]. Journal of Ordnance Equipment Engineering, 2018, 39(8): 146-151.
- [23] 张蕾,赵艳红,姜胜利,等. CL-20及其共晶炸药热力学稳定性 与爆轰性能的理论研究[J].含能材料,2018,26(6):464-470.
 ZHANG Lei, ZHAO Yan-hong, JIANG Sheng-li, et al. Theoretical study on thermodynamic stability and detonation performance of CL-20 and its cocrystal[J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2018, 26(6): 464-470.
- [24] 董海燕. CL-20基共晶炸药形成的热力学研究[D]. 绵阳:西南 科技大学, 2019.
 DONG Hai-yan. Thermodynamic study on the formation of CL-20 based cocrystal explosives[D]. Miangyang: Southwest University of Science and Technology, 2019.
- [25] Rong G, Jun T, Xiao-Hui D, et al. Study on phonon spectra

and heat capacities of CL-20/MTNP cocrystal and coformers by density functional theory method [J]. *Journal of Molecular Modeling*, 2020, 26(6):148.

- [26] Zhao L, Yin Y, Sui H, et al.Kinetic model of thermal decomposition of CL-20/HMX co-crystal for thermal safety prediction
 [J]. Thermochimica Acta, 2019.
- [27] 郭蓉,段晓惠,李洪珍,等. CL-20/1,4-DNI共晶及共晶组分的 声子谱和热力学性质的第一性原理研究[J]. 含能材料,2020, 28(12):1147-1155.
 GUO Rong, DUAN Xiao-hui, LI Hong-zhen, et al. First-principle studies on phonon spectra and thermodynamic properties of CL-20/1, 4-DNI cocrystal and co-formers [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2020, 28 (12): 1147-1155.
- [28] Yi Liu, Rui-jun Gou, Shu-hai Zhang, et al. Effect of solvent mixture on the formation of CL-20/HMX co-crystal explosives
 [J]. Journal of Molecular Modeling, 2020, 26(1): 8-8.
- [29] 刘熠. 混合溶剂对 CL-20/HMX 共晶炸药的影响研究[D]. 太原: 中北大学, 2020.

LIU Yi. Effect of solvent mixtures on CL-20/HMX cocrystal explosives[D]. Taiyuan: North Universityof China, 2020.

[30] 武春磊. 溶剂极性对炸药共晶的影响研究[D].太原:中北大学, 2018.

WU Chun-lei. The Research on the Influence of Solvent Polarity to explosive cocrystal[D]. Taiyuan: North University of China, 2018.

[31] 韩刚.组分配比和溶剂行为对炸药结晶的影响研究[D].太原: 中北大学,2018.

Han Gang. Investigations on the Effect of Component Ratio and Solvent Behavior on the Crystallization of Explosives [D]. Taiyuan: North University of China, 2018.

- [32] 陈斌, 汪营磊, 陆婷婷, 等. 2,4-二硝基-2,4-二氮杂戊烷的合成 与热性能[J].火炸药学报, 2018, 41(6): 543-548.
 CHEN Bin, WANG Ying-lei, LU Ting-ting, et al. Synthesis and thermal properties of 2,4-dinitro-2,4-diazapentane[J].*Chinese Journal of Explosives and Propellants*, 2018, 41(6): 543-548.
- [33] 陶俊, 王晓峰, 赵省向, 等. CL-20/HMX无规作用及共晶作用的 理论计算[J]. 火炸药学报, 2017, 40(4): 50-55.
 Tao Jun, WANG Xiao-feng, ZHAO Sheng-xiang, et al. Theoretical calculation of the random interaction and co-crystal interaction of CL-20/HMX[J]. Chinese Journal of Explosives and Propellants, 2017, 40(4): 50-55.
- [34] 胡盛志,周朝辉,蔡启瑞.晶体中原子的平均范德华半径[J].物 理化学学报,2003(11):1073-1077.
 HU Sheng-zhi, ZHOU Zhao-hui, CAI Qi-rui, Average van der Waals radii of atoms in crystals[J]. Acta Physico-Chimica Sinica, 2003(11):1073-1077.
- [35] Yang Z, Li H, Huang H, et al. Preparation and performance of a HNIW/TNT cocrystal explosive[J]. *Propellants Explosives Pyrotechnics*, 2013, 38(4): 495–501.
- [36] 耿娜. 阿戈美拉汀多晶型和曲尼司特共晶的研究[D]. 广州:中山大学, 2013.
 Geng Na. Studies on the Polymorphism of Agomelatine and the Cocrystals of Tranilast [D]. Gangzhou: Sun Yat-sen University, 2013.
- [37] Muthurajan H, Sivabalan R, Talawar M B, et al. Computer simulation for prediction of performance and thermodynamic

parameters of high energy materials [J]. *Journal of hazardous materials*, 2004, 112(1): 17–33.

- [38] Cooper P W. Extending estimation of C-J pressure of explosives to the very low-density region[C]//Proceedings of the 18th International Pyrotechnic Symposium, Breken-ridge, 1992.
- [39]田德余,赵凤起,刘剑洪.含能材料及相关物性手册[M].北京: 国防工业出版社.2011:168-290.
 TIAN De-yu, ZHAO Feng-qi, LIU Jian-hong. Handbook of energetic materials and the related compounds[M].Beijing: National Defense Industry Press, 2011; 168-290.

Preparation and Characterization of CL-20/DMMD Co-crystal Explosive

SUN Kang-bo^{1,2}, ZHANG Shu-hai², HAO Yong-ping¹, BA Shu-hong¹, JIANG Xia-bing¹

(1. School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China; 2. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China)

Abstract: The co-crystal of hexanitrohexaazaisowurtzitane (CL-20) and 2, 4-dinitro-2, 4-diazapentane (DMMD) was prepared by co-crystallization in solution. It was characterized by single crystal X-ray diffraction (SCXRD), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and fourier transform infrared (FT-IR), and differential scanning calorimetry (DSC). The results show that CL-20/DMMD co-crystal belongs to monoclinic system with space P_{2_1}/c . Analysis of interactions in co-crystal shows that the main forces between two kinds of molecule in co-crystal are hydrogen bonds and features a layered motif. There is new crystal phase in the XRD pattern. The shift of peaks for CL-20/DMMD attributes to the formation of C—H···O hydrogen bonding in FT-IR pattern. Results of DSC show that the melting point of co-crystal is 180.8 °C, which is 21.5 °C and 120.9 °C higher than that of CL-20 and DMMD. The main thermal decomposition peak temperature of CL-20/DMMD co-crystal is 240.1 °C, which increases by 3.5 °C compared with CL-20. The predicted detonation velocity and detonation pressure of CL-20/DMMD co-crystal are 9386 m·s⁻¹ and 45.09 GPa according to the theories of Rothstein and Petersen, respectively. They are slightly lower than that of CL-20 and higher that of DMMD(D=7287 m·s⁻¹, P=21.79 GPa), HMX(D=9048 m·s⁻¹, P=40.55 GPa), RDX(D=8945 m·s⁻¹, P=37.28 GPa), and TNT(7042 m·s⁻¹, P=21.44 GPa).

Key words: co-crystal explosive; hexanitrohexaazaisowurtzitane(CL-20); 2, 4-dinitro-2, 4-diazapentane (DMMD); preparation; characterization

CLC number: TJ55

Document code: A

DOI: 10.11943/CJEM2020226

(责编:姜梅)