文章编号:1006-9941(2019)06-0535-06

装填系数对破甲杀伤复合战斗部威力影响的数值模拟

李兴隆^{1,2},陈科全^{1,2},路中华^{1,2},高大元^{1,2},吕胜涛^{1,2},寇剑锋^{1,2},杨沙^{1,2} (1.中国工程物理研究院化工材料研究所,四川 绵阳 621999; 2.中国工程物理研究院安全弹药研发中心,四川 绵阳 621999)

摘 要: 为了提高破甲杀伤复合战斗部的毁伤威力,研究了装填系数对战斗部破甲和杀伤威力的影响。采用理论分析的方法,计 算了战斗部装填系数从0.71 增大到2.00时破片的成型和杀伤半径;采用非线性有限元软件LS-DYNA,对比分析了战斗部装填系数 为0.80、1.00、1.20、1.40和1.60时成型射流的破甲深度,得到了装填系数与破片杀伤半径、成型射流破甲深度的关系。结果表明, 随着装填系数从0.71 增大到1.86,杀伤半径从9.1 m增大到10.2 m;继续增加装填系数至2.00,杀伤半径不再增大;随着装填系数 的增加,破片平均质量减小;装填系数从0.80 增加到1.60 过程中,破甲深度先减小后增大,最大破甲深度为143.30 mm。

关键词:复合战斗部;装填系数;破甲深度;杀伤半径;毁伤威力

中图分类号: TJ413.⁺2

文献标志码:A

DOI:10.11943/CJEM2018192

1 引言

破甲杀伤战斗部综合了两种毁伤效应,既能形成 金属射流穿透一定厚度的装甲,又能形成破片毁伤有 生目标。因此,破甲杀伤战斗部能满足战场使用的灵 活性和多目标打击能力的需求。国内外对于聚能战斗 部已经有诸多研究,赵长啸^[1]、武双章^[2]、Manfred Held等^[3]研究了药型罩结构参数对射流成型的影响, 但是,聚能战斗部只关注破甲威力,并没有涉及破片威 力的设计。对于破片威力方面的研究,印立魁^[4]、史志 鑫^[5]、Vladimir M. Gold等^[6]研究了不同形状预制破片 的成型与破片杀伤威力。

将破甲战斗部技术与杀爆战斗部技术相结合,可 以形成多毁伤元的复合战斗部。王利侠等^[7]利用新型 薄型波形控制器、半预制壳体和精密破甲战斗部技术, 设计了破甲/杀伤多用途战斗部,使单兵战斗部在基本 保持原有穿深威力的基础上,又增加了杀伤功能。张

收稿日期: 2018-07-13;修回日期: 2018-09-05 网络出版日期: 2019-01-03 基金项目:国家自然科学基金面上项目(11572359) 作者简介:李兴隆(1988-),男,研究实习员,博士,从事弹药工程 与数值模拟研究。e-mail:lixinglong@caep.cn 通信联系人:高大元(1962-),男,副研究员,博士,研究方向为含 能材料的热分析、爆轰和安全性能。e-mail:gaody466@163.com 俊等^[8]提出一种轴向爆炸成型弹丸(EFP)、周向预制破 片的新型破甲杀伤复合战斗部结构,应用LS-DYNA软 件分析了成型结果与破片场的杀伤威力。但是,上述 文献都没有研究战斗部装填系数(装药质量与壳体质 量之比)对破甲和杀伤性能的影响。张丁山等^[9]研究 了温压装药的装填比对战斗部毁伤威力的影响,结果 表明装填比为40%左右时,温压装药爆炸有最大的总 比冲量和毁伤威力。可见,装填系数对战斗部的综合 毁伤威力有重要影响。

为进一步研究装填系数对战斗部综合毁伤威力的 影响,本研究以某破甲杀伤战斗部为对象,在战斗部总 质量和口径固定的情况下,研究了装填系数、破甲威力 和杀伤威力之间的匹配关系。为了兼顾战斗部的破甲 威力和杀伤威力,采用理论计算的方法研究了装填系 数与破片杀伤半径、破片平均质量的关系;采用有限元 软件LS-DYNA进行数值模拟,分析了装填系数与射流 破甲深度的关系,研究结果可为破甲杀伤战斗部综合 毁伤威力的提升提供思路。

2 破甲杀伤战斗部破片杀伤威力计算

2.1 战斗部结构

破甲杀伤战斗部由壳体、装药、药型罩、引信和端 盖组成,其结构如图1所示。该战斗部总质量为1.5 kg,

引用本文:李兴隆,陈科全,路中华,等.装填系数对破甲杀伤复合战斗部威力影响的数值模拟[J].含能材料,2019,27(6):535-540. LI Xing-long, CHEN Ke-quan, LU Zhong-hua, et al. Numerical Simulation of the Influence of Charge-shell Mass Ratio on the Damage Power of Anti-armor and Anti-personnel Composite Warhead[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2019,27(6):535-540.

CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

装药和壳体总质量为1.2 kg,战斗部口径为90 mm。

图1 战斗部结构示意图

1—药型罩, 2—装药, 3—壳体, 4—端盖, 5—引信 Fig.1 Schematic diagram of warhead structure 1—liner, 2—charge, 3—shell, 4—end cover, 5—fuze

2.2 破片杀伤威力理论计算

战斗部爆炸后,弹壳碎成大量高速破片,向四周飞 散,形成一个破片作用场,使处于场中的目标受到毁 伤。根据密集杀伤半径的定义^[10]:对应密集杀伤面积 的圆半径 R₀,称为密集杀伤半径。R₀的含义为^[10]:在 此半径圆周上的有生目标,平均为一块杀伤破片所击 中。相应的射击条件是:弹丸直立地面,头部朝上爆 炸,人形靶正对弹丸呈立姿,投影面积(或受弹面积)为 1.5 m×0.5 m;相应的杀伤准则是:能击穿25 mm厚松 木板的破片为杀伤破片,两块嵌入板内的未穿破片亦 可折算为一块杀伤破片;一片以上杀伤破片击中目标 即为杀伤。

根据上述杀伤半径的定义,在 R₀距离范围的破片 场内,受弹面积为 0.75 m²的区域中必须要有一枚杀 伤破片。根据杀伤破片的定义(即动能大于 78 J的破 片^[10]),以装填系数 c 为变量, c=m_o/m_s,其中:m_o为装 药质量,m_s为壳体质量,对应每一个装填系数。装药 质量 m_o为:

$$m_{\omega} = \rho_{\omega} \left(\pi d_i^2 l / 4 - V_0 \right) \tag{1}$$

式中, ρ_{o} 为装药密度,kg·m⁻³; d_{i} 为装药直径,m;l为壳体和装药长度,m; V_{o} 为战斗部空腔体积,m³,包括药型 單体积和药型罩前端空腔。壳体质量 m_{s} 为:

$$m_{s} = \rho_{s} \left(\pi D^{2} l / 4 - \pi d_{i}^{2} l / 4 \right)$$
(2)

式中, ρ_s 为壳体密度, $kg\cdot m^{-3}$;D为壳体外径, m_o 根据式(1)和式(2)可求出壳体和装药长度 l_s 装药直径 d_{io}

破片飞散角 φ 如图2所示,计算过程为^[10]:

(1)首先画出弹丸爆炸时的膨胀壳体图,即在原
 弹丸轴线下移一段距离Δ=KD/2,D为弹丸原来的直径;K取决于弹体材料,本研究壳体为中碳钢,K取

值 0.84。

(2) 假定弹体部分与装药直接接触部分为有效壳体,此有效部分的纵剖面积为*S*,确定*a*、*b*两点,使图中所示的截面积*S_a、S_b*分别为*S*的5%。

(3) 从膨胀壳体重心 O 连接 a、b 两点,并令
 ∠aOx = φ₁, ∠bOx = φ₂。

图2 飞散角计算示意图^[10]

Fig.2 Schematic diagram for calculating dispersion angle^[10]

根据正态分布特性可见,在 φ_2 - φ_1 的飞散范围内将 包含 90%的破片数目,因此,定义 φ 为破片飞散角。 破片飞散后在空中形成破片场,破片场面积为: $S=4\pi R^2 \sin \varphi$ 。其中,R为目标到爆心的距离。对于距 离R处,需要的杀伤破片数为 $n_0=s/0.75$,若在R距离处 杀伤破片的数量 $n>n_0$,则破片杀伤半径大于R。

为了计算特定装填系数下破片的杀伤半径,需要 计算破片的质量分布和速度衰减。对于自然破片,计 算破片质量的分布规律有不同的经验公式。目前应用 最广泛的为 Mott 公式^[9]:破片总数为 N₀, N₀=m_s/2μ。 式中, 2μ为破片平均质量, kg。它取决于弹壳壁厚、内 径、炸药相对质量。对于薄壁弹,μ可用(3)式计算^[10]:

$$\mu^{0.5} = A \frac{r_0 \left(d_i + r_0\right)^{3/2}}{d_i} \sqrt{1 + \frac{1}{2}c}$$
(3)

式中, r_0 为壳体壁厚,m;A为炸药系数,取决于炸药能量, $kg^{1/2} \cdot m^{-3/2}$ 。根据破片数目随质量的分布规律,破片质量大于 m_p 的数目为^[10]:

$$N(m_{\rm p}) = N_{\rm 0} \exp\left[-\left(m_{\rm p}/\mu\right)^{0.5}\right]$$
(4)

破片初速可由 Gruney 公式计算:

$$v_{\rm p} = \sqrt{2E} \left(\frac{m_{\omega}/m_{\rm s}}{1 + 0.5m_{\omega}/m_{\rm s}} \right)^{1/2}$$
(5)

 $\sqrt{2E}$ 为Gruney常数,决定于炸药性能,本研究对象为B炸药,对于B炸药, $\sqrt{2E}$ =2682 m·s⁻¹。距离*R* 处破片的存速为^[10]:

Chinese Journal of Energetic Materials, Vol.27, No.6, 2019 (535-540)

含能材料

$$v = v_{\rm p} \exp\left(-\frac{R}{Hm_{\rm p}^{1/3}}\right) \tag{6}$$

式中,H为符合系数,主要取决于破片形状,破片的形状有球形、方形、柱形、菱形、长条形和不规则形,对于本研究的自然破片,属于不规则形破片,H取值222,则距离R处破片的动能为:e=0.5m,v²。因此,破片杀伤威力的理论计算流程为:

(1) 根据装填系数计算装药质量和壳体质量;

(2)根据装药质量和壳体质量计算装药和壳体长 度、壳体厚度、装药直径,并根据壳体长度和直径计算 破片飞散角;

(3)根据式(3)~式(5),计算破片平均质量、破片 总数和破片初速;

(4)根据式(6)计算破片在距离 R处的剩余速度,
 并根据杀伤破片的动能要求 e≥78 J和杀伤破片数量要求 n≥n₀,求解出最大杀伤距离 R即为杀伤半径。

破甲杀伤战斗部需要兼顾射流破甲和破片杀伤两 种功能的特点,装填系数太小,形成的射流能量不够, 破甲威力不高;装填系数太大,形成的破片质量初速和 破片个数太少,破片杀伤威力不高。根据上述计算流 程,计算得到装填系数 c 从 0.71 增大到 2.00 时,破片 飞散角随装填比变化的曲线、破片初速随装填比变化 的曲线,如图 3 所示,破片平均质量和杀伤半径随装填 比变化的曲线如图 4 所示。

图3 装填系数对破片飞散角和破片初速的影响

Fig.3 Effect of charge-shell mass ratio on the dispersal angle and initial velocity of fragments

由图 3 得知,随着装填系数的增大,破片飞散角和 初速均增大。分析原因认为,随着装填系数的增大,壳 体厚度减小,壳体长度增大,故飞散角增大;B炸药装 药量增加,且总壳体质量减小,所以破片初速增加。由 图 4 得知,随着装填系数的增大,杀伤半径增加,当装 填系数增大到 1.86 后,其杀伤半径不再增加;这是因 为当装填系数增加到一定程度后,破片质量太小,经过 空气阻力衰减后破片总能量不会增大,故杀伤半径不 再增大,最大杀伤半径为10.2 m。此外,随着装填系 数的增加,破片平均质量减小,由0.095 g减小到 0.063 g。分析原因认为,随着装填系数增加,装药直 径增大,壳体厚度减小,而壳体长度增大。因此,总破 片数增大,破片平均质量减小。

图 4 破片杀伤半径和破片平均质量随装填系数的变化曲线 Fig. 4 Change curves of killing radius and average mass of fragments with charge-shell masst ratio

3 破甲杀伤战斗部数值模拟

为了验证破片杀伤威力的理论计算结果,建立了 破甲杀伤战斗部破片形成过程有限元模型,得到了破 片飞散角和破片初速的数值模拟结果;常用静破甲深 度经验公式^[10]来初步判断所设计的装药结构是否合 理,但当结构相差较大时,经验公式可能出现较大的误 差,需要利用数值模拟对静破甲深度进行仿真计算,因 此,建立了破甲杀伤战斗部破甲过程有限元模型,研究 装填比对破甲深度的影响。

3.1 破甲杀伤战斗部建模

考虑到战斗部结构的对称性,建立了1/4有限元 模型,如图5所示。计算模型由空气、炸药、药型罩、壳 体和靶板五个部件组成,忽略引信部件。其中,空气、 炸药和药型罩采用欧拉算法,壳体和靶板采用拉格朗 日算法,炸高为100 mm。

图 5 破甲杀伤战斗部 1/4 有限元仿真模型 1一壳体, 2一装药, 3—药型罩, 4—空气, 5—靶板 Fig.5 1/4 finite element simulation model of anti-armor and anti-personnel composite warhead

1-shell, 2-charge, 3-liner, 4-air, 5-target plate

数值模拟中各材料参数见表1^[1-2,5]。其中,壳体材 料采用4340钢,材料模型为PLASTIC_KINEMATIC,壳 体厚度与长度根据装填系数进行计算,见表2;装药材料 采用B炸药,材料模型为HIGH_EXPLOSIVE_BURN,状 态方程为JWL,B炸药爆速为8480m·s⁻¹、C-J压力为 34.2 GPa,装药长度与壳体长度一致,装药长度和装 药直径见表2;药型罩的材料选取铜,材料模型为 STEINBERG,状态方程为GRUNEISEN,药型罩的半锥 角为30°,药型罩底部外直径为80mm,药型罩顶部内 直径17.7mm,药型罩壁厚采用均匀壁厚,为2mm; 靶板采用45*钢,材料模型为JOHNSON_COOK,状态 方程为GRUNEISEN,靶板尺寸为Ø80mm×300mm。

表1 数值模拟中材料参数

 Table 1
 Parameters of materials in numerical simulation

component	material	ho / g·cm ⁻³	E/GPa	γ
shell	steel 4340	7.83	220	0.22
charge	comp.B	1.83	-	-
liner	copper	8.96	-	-
target	steel 45#	7.85	200	0.32
air	air	1.29	-	-

Note: *E* is Young's Modulus. γ is Poisson's ratio.

在战斗部总质量确定、战斗部外径一定的情况下, 对应不同装填比,可计算出装药直径、装药和壳体长 度、壳体厚度。由图4得知,当装填系数大于1.60后, 杀伤半径增加不大,但平均破片质量减小;当装填系数 小于0.80时,破片杀伤半径较小。综合考虑,针对装填 系数为0.80、1.00、1.20、1.40、1.60进行了仿真分析, 其所对应的装药直径、壳体长度和壳体厚度见表2。

表2 不同装填系数对应的装药和壳体尺寸

Table 2Size of charge and shell corresponding to differentcharge-shell weight ratio

0	0			
С	<i>D</i> / mm	<i>l</i> / mm	<i>t</i> ₀ / mm	
0.80	82.09	80.03	3.96	
1.00	83.38	85.06	3.31	
1.20	84.37	89.37	2.82	
1.40	84.96	92.25	2.52	
1.60	85.52	95.12	2.24	

Note: *c* is the charge-shell mass ratio. *D* is the diameter of charge. *l* is the length of shell. *l*₀ is the thickness of shell.

3.2 战斗部破片飞散及射流破甲过程

以装填比为1的仿真模型为例,战斗部破片成型 及射流破甲过程见图6。起爆点位置为装药底部中心 点,见图 6a。装药起爆后,爆轰波在炸药中传播, 30 µs时刻炸药完成爆轰,破片成型过程基本完成,形 成破片飞散角,药型罩在爆轰波作用下继续变形,见 图 6b。37 µs时刻,射流成型过程基本完成,且到达靶 板位置,形成的射流见图 6c,此后,开始侵彻靶板。为 减小计算量,将破片单元删除。在 81 µs时刻,射流侵 彻靶板至最大深度,破甲过程结束。

图6 战斗部破片成型及射流破甲过程

Fig.6 Process of fragments formation and armor penetration by jet

3.3 数值模拟结果分析

根据上述仿真模型和仿真过程,分别对装填系数 为0.80、1.00、1.20、1.40和1.60的仿真模型进行了数 值模拟,起爆后30μs,壳体已经完全破碎成破片,破 片完成加速,飞散角不变,可用ls-dyna后处理软件测 量得出;破片初速是30μs时刻壳体单元的平均速度, 通过ls-dyna后处理软件中统计得出;破甲深度是在数 值仿真计算完成后,通过ls-dyna后处理软件直接测量 得到。

破片飞散角的数值模拟值与理论计算值的对比结 果如图 7 所示,破片初速的数值模拟值与理论计算值 的对比结果如图 8 所示,统计不同装填系数的战斗部 对靶板的破甲深度,如图 9 所示。

由图 7 得知,飞散角的理论值与数值模拟值都随 着装填系数的增大而增大,说明破片飞散角随着壳体 长度的增加而增大的规律是正确的。当装填系数小于 1.20时,理论值大于数值模拟值,当装填系数大于 1.20时,理论值小于数值模拟值,但最大偏差值不超 过11°,分析原因认为,理论计算中破片飞散角是以膨 胀弹丸质心为角顶点,而数值模拟中破片飞散角是以 战斗部形心为角顶点,没有考虑药型罩缺口造成的质 量损失,因此,造成了飞散角理论值与仿真值的误差。

由图8得知,破片初速的理论值与数值模拟值都

随着装填系数的增大而增大。装填系数为0.80、1.00时,破片初速的理论值与数值模拟值相差较大,但最大不超过120m·s⁻¹;装填系数为1.20、1.40和1.60时,破片初速的理论值与数值模拟值吻合度较高,误差不超过50m·s⁻¹,验证了Gruney公式的准确性,且随着装药和壳体长径比的增加,Gruney公式准确度提高,这与文献[11]中的结论一致。

图7 破片飞散角的理论值与仿真值的对比

Fig.7 Comparation of the theoritical values and the simulated ones for dispersal angle of fragments

Fig.8 Comparation of the theoritical velocity values and the simulated velocity ones for fragments

图 9 破甲深度、杀伤半径分别与装填系数的关系曲线 Fig.9 The relation curves of depth of armor penetration and killing raius vs. charge-shell weight ratio

由图 9 得知,装填系数为 0.80 时,战斗部破甲深 度为 109.6 mm,此后破甲深度先减小后升高;装填系 数为1.60时,破甲深度达到最大值143.3 mm。随着装 填系数的增加,总装药量和装药长度都增大,则压垮药 型罩的有效装药量增大,但破甲深度不仅与药型罩形成 的射流能量有关,也与射流的形状有关。射流到达靶板 前的形状见图10。当装填系数 c=1.00、1.20和1.40 时,射流长度依次较大,则破甲深度依次增大;当装填 系数 c=1.60时,射流直径比装填系数 c=0.80时射流直 径更小,射流的能量更集中,因此,破甲深度更大。

Fig.10 Shape charts of jet arriving in frint of target plate

综合考虑破甲杀伤战斗部的毁伤效能,应兼顾其 破甲威力与杀伤威力。由图9得知,当装填系数为 1.60时,战斗部的破甲深度和杀伤半径均为最大,但 破片平均质量随着装填比的增大而减小。因此,可针 对不同的毁伤目标,提出对战斗部的破甲性能、杀伤性 能和破片质量的要求,设计出满足需求的战斗部。

4 结论

(1)理论计算和数值模拟的结果表明,随着壳体长 径比的增大,破片初速增大;数值模拟得到的破片初速 与Gruney公式计算的结果接近度更高;数值模拟得到 的破片飞散角与理论计算结果最大相差不超过11°。

(2)理论计算得出,随着装填系数从0.71增大到 1.86,破片的杀伤半径从9.1 m增大到10.2 m,当装填 系数进一步增大到2.00时,杀伤半径保持10.2 m不再 增大;破片平均质量随着装填系数的增大而减小。

(3)数值模拟研究了成型射流的破甲深度与装填 系数的关系,在装填系数从0.80增加到1.60过程中, 破甲深度先减小后增大,最大破甲深度为143.30 mm; 破甲深度与有效ZYL和射流形状有关,射流越细长,则 能量越集中,破甲深度越大。

参考文献:

[1] 赵长啸, 钱芳, 徐建国, 等. 药型罩结构参数对整体式 MEFP 成

型的影响[J].含能材料, 2016, 24(5): 485-490.

ZHAO Chang-xiao, QIAN Fang, XU Jian-guo, et al. Effect of liner configuration parameters on formation of integral MEFP [J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2016, 24(5): 485–490.

- [2] 武双章,顾文彬,刘建青,等.椭圆形罩LSC 侵彻钢锭试验与三 维数值模拟[J]. 含能材料, 2014, 22(5): 600-606.
 WU Shuang-zhang, GU Wen-bin, LIU Jian-qing, et al. Test and three-dimensional numerical simulation of penetrating steel ingot by linear shaped charge with oval cover [J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*), 2014, 22(5): 600-606.
- [3] Manfred Held. Shaped charge optimization against ERA targets[J]. Propellants, Explosives, Pyrotechnics, 2005, 30 (3): 216-223.
- [4] 印立魁, 蒋建伟. 多层球形预制破片战斗部破片初速场的计算 模型[J]. 含能材料, 2014, 22(3): 300-305.
 YIN Li-kui, JIANG Jian-wei. Calculation model of initial velocity field on multilayered spherical fragments warhead [J]. Chinese Journal of Energetic Materials(Hanneng Cailiao), 2014, 22(3): 300-305.
- [5] 史志鑫, 尹建平, 王志军. 预制破片的形状对破片飞散性能影响 的数值模拟研究[J]. 兵器装备工程学报, 2017, 38(12): 31-35.

SHI Zhi-xin, YIN Jian-ping, WANG Zhi-jun. Numerical simulation of the influence of prefabricated fragments shape on fragment scattering performance [J]. *Journal of Ordnance Equipment Engineering*, 2017, 38(12): 31–35.

- [6] Vladimir M Gold. Fragmentation model for large L/D (length over diameter) explosive fragmentation warheads[J]. Defence Technology, 2017, 13: 300-309.
- [7] 王利侠,宝慧,孙兴昀,等.破甲/杀伤多用途战斗部结构设计及 试验研究[J].火炸药学报,2016,39(2):75-79.
 WANG Li-xia, YUAN Bao-hui, SUN Xing-yun, et al. Structural design and experimental research on the anti-armor and anti-personnel multi-purpose warhead[J]. *Chinese Journal of Explosives & Propellants*, 2016, 39(2): 75-79.
- [8] 张俊,刘荣忠,郭锐,等.破甲杀伤复合战斗部仿真研究[J].计 算机仿真,2012,29(12):34-37.
 ZHANG Jun, LIU Rong-zhong, GUO Rui, et al. Simulation study on anti-armor and anti-personnel composite warhead[J]. *Computer Simulation*, 2012, 29(12): 34-37.
- [9] 张丁山,周涛,许碧英,等.温压战斗部装填比对毁伤威力的影响[J].含能材料,2016,24(3):226-230.
 ZHANG Ding-shan, ZHOU Tao, XU Bi-ying, et al. Effect of loading ratio of thermobaric warhead on damage power[J]. *Chinese Journal of Energetic Materials* (Hanneng Cailiao), 2016,24(3):226-230.
- [10] 魏惠之,朱鹤松,汪东晖,等.弹丸设计理论[M].北京:国防工 业出版社,1985.
 WEI Hui-zhi, ZHU He-song, WANG Dong-hui. Design and theory of projectile [M]. Beijing: National Defense IndusIry Press,1985.
- [11] Hezi Y Grisaro, Avraham N. Dancygier. Characteristics of combined blast and fragments loading[J]. International Journal of Impact Engineering, 2018, 116: 51-64.

Numerical Simulation of the Influence of Charge-shell Mass Ratio on the Damage Power of Anti-armor and Anti-personnel Composite Warhead

LI Xing-long^{1,2}, CHEN Ke-quan^{1,2}, LU Zhong-hua^{1,2}, GAO Da-yuan^{1,2}, LÜ Sheng-łao^{1,2}, KOU Jian-feng^{1,2}, YANG Sha^{1,2} (1. Institute of Chemical Materials, CAEP, Mianyang 621999, China; 2. Robust Munitions Center, CAEP, Mianyang 621999, China)

Abstract: To improve the damage power of anti-armor and anti-personnel composite warhead, the effect of charge-shell weight ratio on the armor-penetrating and killing power of warhead was researched. The formation and killing radius of fragments were calculated by theoritical analysis mehtod when the charge-shell mass ratio of warhead increased from 0.71 to 2.00. A non-linear finite element software, LS-DYNA, was used to compare and analyze the depth of armor penetration by molding jet when the charge-shell mass ratio of warhead was 0.80, 1.00, 1.20, 1.40 and 1.60, and the relationship of the charge-shell mass ratio vs. the killing radius of fragments and the depth of armor penetration by molding jet was obtained. Results show that the killing radius increases from 9.1 m to 10.2 m with the increase of charge-shell mass ratio from 0.71 to 1.86. The killing radius doesn't increase anymore when the charge-shell mass ratio increases to 2.00. The average weight of fragments decreases with the increase of charge-shell mass ratio from 0.80 to 1.60, and the maximum perforation decreases first and then increases with the increase of charge-shell mass ratio from 0.80 to 1.60, and the maximum perforation deep is 143.30 mm.

Key works: composite warhead; charge-shell mass ratio; depth of armor penetration; killing radius; damage powerCLC number: TJ413.*2Document code: ADOI: 10.11943/CJEM2018192

(责编:王艳秀)