#### 文章编号:1006-9941(2010)04-0368-04

## Thermal Behavior and Nonisothermal Decomposition Reaction Kinetics of 4-Amino-1,2,4-triazole Copper Complex

#### REN Ying-hui<sup>1</sup>, LI Dan<sup>1</sup>, ZHAO Feng-qi<sup>2</sup>, YI Jian-hua<sup>2</sup>, MA Hai-xia<sup>1</sup>, SONG Ji-rong<sup>1,3</sup>

(1. School of Chemical Engineering, Shaanxi Key Laboratory of Physico-inorganic Chemistry, Northwest University, Xi'an 710069, China; 2. Xi'an Modern Chemistry Research Institute, Xi'an 710065, China; 3. Conservation Technology Department, The Palace Museum, Beijing 100009, China)

**Abstract**:  $Cu(4-ATz)_2 Cl_2 \cdot H_2 O$  was synthesized with 4-amino-1,2,4-triazole (4-ATz) and copper chloride dihydrate, and was characterized by elemental analysis, IR and melting point determination. The thermal behaviors and nonisothermal demposition reaction kinetics of the complex were studied by differential scanning calorimetry (DSC) and thermogravimetry and derivative thermogravimetry (TG-DTG) techniques. The results show that the mole ratio of metal to ligand is 1 : 2. The reaction mechanism of the main exothermic decomposition process of the complex is classified as chemical reaction and  $f(\alpha) = \frac{3}{2}(1-\alpha)[-\ln(1-\alpha)]^{1/3}$ , and the kinetic equation is obtained as:  $d\alpha/dt = 10^{21.83} \times \frac{3}{2}(1-\alpha)[-\ln(1-\alpha)]^{1/3} \times \exp(-2.75 \times 10^4/T)$ .

Key words: physical chemistry; copper complex; 4-amino-1,2,4-triazole; thermal decomposition mechanism; nonisothermal reaction kineticsCLC number: TJ55; O642; O643Document code: ADOI: 10.3969/j.issn.1006-9941.2010.04.003

#### 1 Introduction

It is well known that the metal complexes with 1,2,4trizole derivatives have potential advantage used in solid propellant formulations as a new generation of burning rate modifiers, because they have more particular properties, such as high nitrogen content, high enthalpy of formation and high densities<sup>[1-5]</sup>. Recently, a great deal of interest in energetic materials based on the heterocyclic complexes such as triazole and tetrazole<sup>[6-7]</sup>. These materials derive their energetic qualities from the large number of the heterocylic ring systems in their molecule. The utilization of the 4-amino-1,2,4-triazole (4-ATz) derivatives, its perchlorate and nitrate, have been reported earlier<sup>[8-9]</sup>, but 4-amino-1,2,4-triazole copper ((4-ATz)Cu) complex and its thermal behaviors as well as nonisothermal decomposition reaction kinetics have not been reported in literatures<sup>[10-11]</sup>. In order to provide deeper insight into the mechanism of inhibiting function and catalysis, it is essential to investigate its thermal decomposition behavior and kinetics. In this paper,  $(C_2N_4H_4)_2CuCl_2 \cap H_2O$  was prepared, and its structure was determined and the thermal behavior and nonisothermal decomposition reaction kinetics were studied.

# 2 Experimental

Received Date: 2009-09-09; Revised Date: 2009-11-26

**Corresponding Author:** REN Ying-hui (1977 – ), female, lecturer, research field: the synthesis and properties of energetic materials. e-mail: renyinghui\_ren@ 163.com

#### 2.1 Materials

(4-ATz) Cu used in this work was prepared according to the following method: an appropriate amount 4-ATz<sup>[12]</sup> (0.0210 g, 0.25 mmol) was put into 10 mL of water, stirring at 60 °C for 30 min. CuCl<sub>2</sub> · 2H<sub>2</sub>O (0.0213 g,0.125 mmol) was dissolved in 10 mL ethanol and the solution was added into 4-ATz solution slowly and stirring at 60 °C for 120 min. Then, the blue precipitate was appeared. Finally, the precipitate was washed, filtrated and dried in vacuum at 80 °C, and then ( $C_2N_4H_4$ )<sub>2</sub>CuCl<sub>2</sub> · H<sub>2</sub>O was obtained. Yield: 70%. m.p.: 235 - 238 °C; IR (KBr)<sup>[13]</sup> are: 3389, 3238, 3130, 1640, 1546, 1222, 1081, 1060, 977, 867, 615 cm<sup>-1</sup>. Anal. Calc. for ( $C_2N_4H_4$ )<sub>2</sub>CuCl<sub>2</sub> · H<sub>2</sub>O(%): C 15.84, H 2.64, N 36.96, Found(%): C 15.08, H 2.508, N 34.89.

#### 2.2 Equipment and conditions

DSC and TG-DTG curves for the complex under the condition of flowing nitrogen gas (purity, 99. 999%, atmospheric pressure) were obtained by using a 204HP differential scanning calorimeter (Netzsch Co., Germany) and a SDT Q600 thermal analyzer (TA Co., USA), respectively. The conditions of DSC analyses were: sample mass is about 1 mg, and N<sub>2</sub> flowing rate is 50 cm<sup>3</sup> · min<sup>-1</sup>, and heating rate is 5, 10, 15, 20 K · min<sup>-1</sup>, and furnace pressures is 0.1 MPa, and reference sample is  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, and type of crucible is aluminum pan with a pierced lid. The conditions of TG-DTG were: sample mass, about 1 mg; N<sub>2</sub> flowing rate, 100 cm<sup>3</sup> · min<sup>-1</sup>; heating rate ( $\beta$ ), 5, 10, 15, 20 K · min<sup>-1</sup>.

### 3 Results and discussion

#### 3.1 Decomposition processes analysis for (4-ATz)Cu

Typical DSC and TG-DTG curves for the complex are

**Project Supported**; National Natural Science Foundation of China (No. 20803058), Foundation of National Key Lab on Combustion Technology (No. 9140A28020308BQ3402) and Science and Technology Foundation of Northwest University(NG0908)

shown in Figs. 1 and 2. The DSC curve indicates that the thermal decomposition of the complex was composed of two exothermic processes with the peak temperatures of 505.1 K and 899.3 K, respectively, corresponding to two mass-loss stages in TG curve and two peaks in DTG curve.

The first mass-loss stage in TG curve began at about 473.2 K and completed at 525.0 K with a mass loss of 34.6%. The second stage began from 592.2 K to 921.9 K, with a mass loss of 29.3%. The first stage is caused by the main exothermic decomposition reaction.



**Fig. 1** DSC curve for the complex at a heating rate of 10 K  $\cdot$  min<sup>-1</sup>



Fig. 2 TG-DTG curves for the complex at a heating rate of 10 K  $\cdot$  min<sup>-1</sup>

#### 3.2 Kinetic data analysis for (4-ATz)Cu

In order to obtain the kinetic parameters [ the apparent activation energy ( $E_a$ ) and pre-exponential constant (A) ] of the main exothermic decomposition reaction of (4-ATz)Cu, and the most probable kinetic model function, the DTG curves at a heating rate of 5, 10, 15, and 20 K  $\cdot$  min<sup>-1</sup> were dealt with mathematic means, and five intergal methods [Eqs. (1) –

|         | ner                      |
|---------|--------------------------|
| Table 1 | Kinetic analysis methods |
|         |                          |

(5)] and one differential method [Eq. (6)] in Table 1 are employed  $^{[14-17]}.$ 

In these equations,  $\alpha$  is the conversion degree of the major exothermic reaction, *T* is the absolute temperature (K) at time of *t*,  $T_p$  is the peak temperature, *A* is the pre-exponential factor, *R* is the gas constant,  $\beta$  is the linear heating rate, *E* is the apparent activation energy.  $f(\alpha)$  and  $G(\alpha)$  are the differential model function and the integral model function, respectively,  $\alpha$  is the conversion degree. The data needed for the equations of the integral and differential methods, *i*,  $\alpha_i$ ,  $\beta_i$ ,  $T_i$ ,  $T_e$ ,  $T_p$ ,  $i=1,2,3,\cdots,n$ , are obtained from the DTG curves and summarized in Tables 2 and 3.

The values of  $E_a$  were obtained by Ozawa's method [Eq. (5)] with  $\alpha$  changing 0 to 1, and the  $E_a - \alpha$  relation curve is shown in Fig. 3. It indicates that the activation energy of the decomposition process changes greatly by diverse level with an increase in the conversion degree, except that for the section of  $\alpha = 0.10 - 0.90$ , activation energy changes faintly, and it means that the decomposition mechanism of the process does not transfer in essence or the transference can be ignored. Therefore, it is feasible to research into the reaction mechanism and kinetics in the section of  $\alpha = 0.10 - 0.90$ .

Forty-one types of kinetic model function in Ref. [16] and the original data tabulated in Table 2 are put into Eqs. (1) – (6) in Table 1 for calculation. The values of  $E_a$ , IgA, linear correlation coefficient (r), and standard mean square deviation (Q) can be calculated with the linear least-squares method at various heating rates 5, 10, 15, 20 K  $\cdot$  min<sup>-1</sup>, and they are listed in Table 3. The most probable mechanism function is selected by the better values of r, and Q taken from Ref. [16]. The results of satisfying the conditions mentioned above are also listed in Table 3.

The values of  $E_a$ , and IgA obtained from nonisothermal curve are in approximately good agreement with the calculated values obtained by Kissinger's method and Ozawa's method. Therefore, we conclude that the reaction mechanism of exothermic main decomposition process of the complex is classified as chemical reaction and  $G(\alpha) = [-\ln(1-\alpha)]^{2/3}$ . Substituting  $f(\alpha)$  with  $\frac{3}{2}(1-\alpha)[-\ln(1-\alpha)]^{1/3}$ , *E* with 228.89 kJ  $\cdot$  mol<sup>-1</sup> and *A* with 10<sup>21.83</sup> s<sup>-1</sup> in Eq. (7):  $d\alpha/dt = Af(\alpha)e^{-E/RT}$  (7) the kinetic equation of the exothermic decomposition reaction may be described as:

$$d\alpha/dt = 10^{21.83} \times \frac{3}{2} (1-\alpha) [-\ln(1-\alpha)]^{1/3} \times \exp(-2.75 \times 10^4/T).$$

| method            | equation                                                                                                                   |     |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|-----|
| ordinary-integral | $\ln[G(\alpha)/T^{2}] = \ln[(AR/\beta E)(1 - 2RT/E)] - E/RT$                                                               | (1) |
| Mac Callum-Tanner | $lg[G(\alpha)] = lg(AE/\beta R) - 0.4828E^{0.4357} - (0.449 + 0.217E)/(0.001T)  (E \text{ in kcal} \cdot \text{mol}^{-1})$ | (2) |
| Šatava V, Šesták  | $\lg[G(\alpha)] = \lg(A_s E_s / \beta R) - 2.315 - 0.4567 E_s / RT$                                                        | (3) |
| Agrawal           | $\ln[G(\alpha)/T^{2}] = \ln\{(AR/\beta E)[1-2(RT/E)]/[1-5(RT/E)^{2}]\} - E/RT$                                             | (4) |
| Flynn-Wall-Ozawa  | $\lg \beta = \lg  AE/[RG(\alpha)]  -2.315 - 0.4567 E/RT$                                                                   | (5) |
| Kissinger         | $\ln(\beta_i / T_{pt}^2) = \ln(A_k R / E_k) - E_k / R T_{pt},  i = 1, 2, \dots, 4$                                         | (6) |

| α    | <i>T</i> <sub>5</sub> / K | T <sub>10</sub> / K | T <sub>15</sub> / K | T <sub>20</sub> / K | α    | <i>T</i> <sub>5</sub> / K | T <sub>10</sub> / K            | T <sub>15</sub> / K            | T <sub>20</sub> / K            |
|------|---------------------------|---------------------|---------------------|---------------------|------|---------------------------|--------------------------------|--------------------------------|--------------------------------|
| 0.00 | 468.1                     | 473.2               | 477.2               | 480.6               | 0.52 | 498.2                     | 505.5                          | 508.8                          | 512.7                          |
| 0.02 | 479.6                     | 487.2               | 490.2               | 494.6               | 0.54 | 498.6                     | 505.9                          | 509.2                          | 513.1                          |
| 0.04 | 483.2                     | 490.6               | 493.7               | 497.9               | 0.56 | 498.9                     | 506.2                          | 509.5                          | 513.5                          |
| 0.06 | 485.2                     | 492.8               | 495.9               | 499.8               | 0.58 | 499.3                     | 506.5                          | 509.8                          | 513.8                          |
| 0.08 | 486.7                     | 494.3               | 497.4               | 501.2               | 0.60 | 499.6                     | 506.9                          | 510.2                          | 514.2                          |
| 0.10 | 487.9                     | 495.5               | 498.6               | 502.3               | 0.62 | 500.0                     | 507.2                          | 510.5                          | 514.6                          |
| 0.12 | 488.9                     | 496.4               | 499.6               | 503.2               | 0.64 | 500.3                     | 507.5                          | 510.9                          | 515.0                          |
| 0.14 | 489.7                     | 497.3               | 500.4               | 504.0               | 0.66 | 500.6                     | 507.9                          | 511.2                          | 515.4                          |
| 0.16 | 490.4                     | 498.0               | 501.1               | 504.6               | 0.68 | 501.0                     | 508.2                          | 511.6                          | 515.8                          |
| 0.18 | 491.1                     | 498.6               | 501.8               | 505.3               | 0.70 | 501.4                     | 508.6                          | 512.0                          | 516.2                          |
| 0.2  | 491.7                     | 499.2               | 502.3               | 505.8               | 0.72 | 501.7                     | 509.0                          | 512.4                          | 516.7                          |
| 0.22 | 492.2                     | 499.7               | 502.9               | 506.4               | 0.74 | 502.1                     | 509.3                          | 512.8                          | 517.1                          |
| 0.24 | 492.7                     | 500.2               | 503.4               | 506.9               | 0.76 | 502.5                     | 509.7                          | 513.2                          | 517.6                          |
| 0.26 | 493.2                     | 500.6               | 503.9               | 507.3               | 0.78 | 502.8                     | 510.2                          | 513.6                          | 518.0                          |
| 0.28 | 493.6                     | 501.1               | 504.3               | 507.8               | 0.80 | 503.2                     | 510.6                          | 514.0                          | 518.5                          |
| 0.30 | 494.0                     | 501.5               | 504.7               | 508.3               | 0.82 | 503.7                     | 511.1                          | 514.5                          | 519.0                          |
| 0.32 | 494.5                     | 501.9               | 505.2               | 508.7               | 0.84 | 504.1                     | 511.6                          | 515.0                          | 519.6                          |
| 0.34 | 494.9                     | 502.3               | 505.6               | 509.1               | 0.86 | 504.6                     | 512.1                          | 515.5                          | 520.2                          |
| 0.36 | 495.3                     | 502.7               | 505.9               | 509.5               | 0.88 | 505.1                     | 512.7                          | 516.1                          | 520.9                          |
| 0.38 | 495.6                     | 503.1               | 506.3               | 510.0               | 0.90 | 505.7                     | 513.3                          | 516.8                          | 521.6                          |
| 0.40 | 496.0                     | 503.4               | 506.7               | 510.4               | 0.92 | 506.3                     | 514.0                          | 517.5                          | 522.5                          |
| 0.42 | 496.4                     | 503.8               | 507.1               | 510.8               | 0.94 | 507.1                     | 514.9                          | 518.4                          | 523.6                          |
| 0.44 | 496.8                     | 504.2               | 507.4               | 511.2               | 0.96 | 508.3                     | 516.0                          | 519.5                          | 524.9                          |
| 0.46 | 497.1                     | 504.5               | 507.8               | 511.5               | 0.98 | 510.3                     | 517.7                          | 521.1                          | 526.8                          |
| 0.48 | 497.5                     | 504.8               | 508.1               | 511.9               | 1.00 | 518.5                     | 525.0                          | 526.6                          | 533.3                          |
| 0.50 | 497.9                     | 505.2               | 508.5               | 512.3               |      | 499.7( $T_{\rm p}$ )      | 506.4( <i>T</i> <sub>p</sub> ) | 509.1( <i>T</i> <sub>p</sub> ) | 512.3( <i>T</i> <sub>p</sub> ) |

 Table 2
 Data for the decomposition process of the complex determined by DTG curve

Note: T with the subscript 5, 10, 15, and 20 is the temperature obtained at the heating rates of 5, 10, 15, and 20 K  $\cdot$  min<sup>-1</sup>, respectively.

 Table 3
 Calculated values of kinetic parameters of decomposition of the complex

| method            | $\beta/K \cdot min^{-1}$ | $E_a/kJ \cdot mol^{-1}$ | $\lg(A/s^{-1})$ | r      | Q      |
|-------------------|--------------------------|-------------------------|-----------------|--------|--------|
|                   | 5                        | 226.83                  | 21.65           | 0.9986 | 0.0317 |
| ordinary integral | 10                       | 236.24                  | 22.58           | 0.9976 | 0.0531 |
| orumary-integral  | 15                       | 234.66                  | 22.43           | 0.9976 | 0.0549 |
|                   | 20                       | 219.64                  | 20.81           | 0.9951 | 0.1103 |
|                   | 5                        | 228.11                  | 21.78           | 0.9987 | 0.0059 |
| Mag Callum Tannor | 10                       | 237.71                  | 22.74           | 0.9978 | 0.0099 |
| Mac Callum-Talmer | 15 20                    | 236.18                  | 22.59           | 0.9977 | 0.0103 |
|                   | 20                       | 221.12                  | 20.95           | 0.9954 | 0.0207 |
|                   | 5                        | 223.56                  | 21.35           | 0.9986 | 0.0059 |
| Čatava V Častáli  | 10                       | 232.62                  | 22.26           | 0.9978 | 0.0099 |
| Salava v, Sesluk  | 15                       | 231.18                  | 22.12           | 0.9977 | 0.0103 |
|                   | 20                       | 216.96                  | 20.56           | 0.9954 | 0.0207 |
| 01                | 5                        | 226.83                  | 21.65           | 0.9986 | 0.0317 |
| Amount of N. N.   | 10                       | 236.24                  | 22.58           | 0.9976 | 0.0531 |
| Agrawal           | 15                       | 234.66                  | 22.43           | 0.9976 | 0.0549 |
| DE TA             | 20                       | 219.64                  | 20.81           | 0.9951 | 0.1103 |
| mean A BU         |                          | 228.89                  | 21.83           |        |        |
| Flynn-Wall-Ozawa  |                          | 226.62                  |                 | 0.9988 | 0.0005 |
| Kissinger         |                          | 229.90                  | 21.99           | 0.9987 | 0.0026 |

Note:  $\beta$  is the heating rate;  $E_a$  is the apparent activation energy; A is the pre-exponential factor; r is the related coefficient; Q is the variance, respectively.



**Fig. 3**  $E_a - \alpha$  curve for the decomposition of the complex by Ozawa's WWW.ene method

#### 4 Conclusions

(1)  $Cu(4-ATz)_2CI_2 \cdot H_2O$  was synthezized, its thermal decomposition processes have two mass-loss stages and the exothermic decomposition reaction occurred in the first stage.

(2) The decomposition reaction kinetics of the main decomposition process of  $Cu(4-ATz)_2CI_2 \cdot H_2O$  was investigated, and the kinetic model function, apparent activation energy, and pre-exponential constant of the reaction were obtained as  $\frac{3}{2}(1-\alpha)[-\ln(1-\alpha)]^{1/3}$ , 228.89 kJ · mol<sup>-1</sup>,  $10^{21.83}$  s<sup>-1</sup>, respectively.

#### **References**:

- [1] Billes F, Endredi H, Keresztury G. Vibrational spectroscopy of triazoles and tetrazole [ J ]. Journal of Molecular Structure ( Theochem),2000,530: 183 - 200.
- [2] Gutowski K E, Rogers R D, Dixon D A. Accurate thermochemical properties for energetic materials applications. II. heats of formation of imidazolium-, 1,2,4-triazolium-, and tetrazolium based energetic salts from isodesmic and lattice energy calculations[J]. J Phys Chem B, 2007, 111: 4788 - 4800.
- [3] Meng J, Kung P P. Rapid, microwave-assisted synthesis of N1-substituted 3-amino-1, 2, 4-triazoles [J]. Tetrahedron Letters, 2009, 50(15): 1667 - 1670.

- [4] ZHANG Tong-lai, ZHANG Jian-guo, ZHANG Zhi-gang, et al. Preparation and molecular structure of  $\{[Ag(ATO)_2]CIO_4\}_n[J]$ . Acta Chim Sinica(Huaxue Xuebao),2000,58(5): 533-537.
- [5] HU Rong-zu, SONG Ji-rong, LI Fu-ping, et al. Preparation, crystal structure, thermal decompositionmechanism and thermodynamical properties of  $[Dy(NTO)_2(H_2O)_6] \cdot NTO \cdot 4H_2O[J]$ . Thermochimica Acta, 1997, 299(1): 87-93.
- [6] Jin C M, Ye C, Piekarski C, et al. Mono and bridged azolium picrates as energetic salts[J]. Eur J Inorg Chem, 2005: 3760 - 3767.
- [7] XUE Hong, GAO Ye, Twamley B, et al. New energetic salts based on nitrogen-containing heterocycles [J]. Chem Mater, 2005, 17: 191 - 198.
- [8] Slikder A K, Geetha M, Sarwade D B, et al. Studies on characterisation and thermal behaviour of 3-amino-5-nitro-1, 2, 4-triazole and its derivatives [J]. Journal of Hazardous Materials, 2001, A82:1-12.
- [9] Matulková I, Němec I, Teubner K, et al. Novel compounds of 4-amino-1,2,4-triazole with dicarboxylic acids- crystal structures, vibrational spectra and non-linear optical properties [J]. Journal of Molecular Structure, 2008, 873: 46-60.
- [10] Matulková I, Němec I, Císaáová I, et al. Novel material for second harmonic generation: 3-Amino-1,2,4-triazolinium(1 +) hydrogen l-tartrate [J]. Journal of Molecular Structure, 2007, 834 -836: 328 - 335.
- [11] LIU Jing-jing, HE Xiang, SHAO Min, et al. Syntheses, crystal structures and characterizations of three new copper( II ) azide coordination polymers with 1, 2, 4-triazole ligands [J]. Journal of Molecular Structure, 2009, 919: 189 - 195.
- [12] Sanz D, Torralba M P, Alarcón S H, et al. Tautomerism in the solid state and in solution of a series of 6-Aminofulvene-1-aldimines [J]. J Org Chem, 2002, 67: 1462-1471.
- [13] LU Yong-quan, DENG Zhen-hua. Practical Infrared Spectroscopy Analysis[M]. Beijing: Publishing House of Electronics Industry, 1989.
- [14] Kissinger H E. Reaction kinetic in differential thermal analysis[J]. Analytical Chemistry, 1957, 29: 1702 - 1706.
- [15] Ozawa T. A new method of analyzing therma-gravimetric data [J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881 - 1886.
- [16] HU Rong-zu, SHI Qi-zhen. Thermal Analysis Kinetics [M]. Beijing: Science Perss, 2001: 47.
- [17] Šatava V, Šesták J. Mechanism and kinetics of calcinm sulfate hemihydrate by nonisothermal and isothermal thermogravimetry [J]. Thermochem Acta, 1971(2): 423.

## 4-氨基-1,2,4-三唑铜配合物的热分解机理及非等温反应动力学

任莹辉',李 丹',赵凤起<sup>2</sup>,仪建华<sup>2</sup>,马海霞<sup>1</sup>,宋纪蓉<sup>1,3</sup>

(1. 西北大学化工学院,陕西省物理无机化学重点实验室,陕西西安710069;2. 西安近代化学研究所,陕西西安710065; 3. 故宫博物院文保科技部,北京100009)

要:利用4-氨基-1,2,4-三唑(4-ATz)与二水氯化铜合成了标题化合物(C<sub>2</sub>N<sub>4</sub>H<sub>4</sub>)<sub>2</sub>CuCl<sub>2</sub>·H<sub>2</sub>O,采用元素分析和红外光谱分 析对配合物进行了结构表征,用 DSC 和 TG-DTG 研究了配合物的热行为及主放热分解阶段的动力学。结果表明,金属离子与配体 的化学计量比为1:2。配合物的主要分解阶段由机理函数  $f(\alpha) = \frac{3}{2}(1-\alpha)[-\ln(1-\alpha)]^{1/3}$ 控制,反应速率方程为:  $d\alpha/dt = 10^{21.83} \times \frac{3}{2} (1-\alpha) \left[ -\ln(1-\alpha) \right]^{1/3} \times \exp(-2.75 \times 10^4/T)_{\circ}$ 

关键词:物理化学;铜配合物;4-氨基-1,2,4-三唑;热分解机理;非等温反应动力学 **DOI**: 10.3969/j.issn.1006-9941.2010.04.003 中图分类号: TJ55; O642; O643 文献标识码:A