文章编号:1006-9941(2022)03-0197-07

Al/Fe_2O_3 纳米铝热剂界面结构和稳定性的周期性密度泛函理论研究

薛 闯1,高 贫2,王桂香1,贡雪东1

(1. 南京理工大学化学与化工学院,江苏 南京 210094; 2. 国家民用爆破器材质量监督检验中心,江苏 南京 210094)

摘 要: 纳米铝热剂是一类应用广泛的含能复合材料,系统研究其界面结构与性能的关系,对制备性能更优的新型铝热剂有重要指导意义。采用周期性密度泛函理论方法研究了Fe₂O₃(104)和Fe₂O₃(110)表面的结构、表面能以及由它们与Al(111)表面构成的Al/Fe₂O₃界面(AFS1、AFS2、AFS3、AFS4和AFS5)的结构、黏附功和键合特征。结果表明,Fe₂O₃(104)和Fe₂O₃(110)的O原子暴露表面更稳定,它们与Al(111)构成的界面AFS1和AFS5在所研究的5种界面中也最稳定,分别具有最大的黏附功(3.92 J·m⁻²和 3.02 J·m⁻²),且AFS1比AFS5更稳定。在这两种最稳定的界面中,AI原子都是堆积在Fe₂O₃表面O原子的顶位,界面键合主要是通过Al-O离子键作用。

关键词:周期性密度泛函理论;纳米铝热剂;Al/Fe₂O₃;界面结构;界面稳定性
 中图分类号:TJ55
 文献标志码:A

DOI:10.11943/CJEM2021224

1 引言

由金属 AI 和其他金属氧化物构成的铝热剂能量 密度高,在燃烧时能释放大量热而产生很高温度,在冶 金、爆破、新材料制备等领域有较多应用^[1-3]。然而传 统铝热剂中的燃料和氧化剂颗粒较大,接触不紧密,导 致其燃速慢,一定程度上影响了铝热剂的更广泛应 用。研究表明,将铝热剂的粒度从微米级超细化到纳 米级时,反应速率可提高超千倍,因此纳米铝热剂成为 当前一个研究热点^[4-6]。近年来有许多纳米铝热剂体 系被研究报道,其中 Al/Fe₂O₃纳米铝热体系因其高能 量密度而备受关注,成为研究最广的铝热剂之一^[7-10]。

界面是纳米复合材料的重要组成部分,是影响载 荷传递、材料强度和反应机理的关键因素。深入理解 界面结构的性质对指导纳米复合材料的制备和应用具

收稿日期: 2021-08-23;修回日期: 2021-09-20
网络出版日期: 2022-01-11
基金项目:国家自然科学基金项目(51576101)
作者简介:薛闯(1990-),男,博士研究生,主要从事含能材料理论
计算研究。e-mail:1923204489@qq.com
通信联系人:王桂香(1978-),女,副教授,主要从事含能材料理论
计算研究。e-mail:wanggx1028@163.com
贡雪东(1967-),男,教授,主要从事含能材料理论计算研究。
e-mail:gongxd325@njust.edu.cn

有重要意义。目前对于 Al/Fe₂O₂纳米铝热剂界面的研 究,多是通过电镜扫描观察AI纳米颗粒与Fe,O,基体 间的晶面堆垛,而对Al/Fe,O3界面的性质,如堆垛关 系、界面强度和电子结构等仍不清楚。而第一性原理 方法作为在电子水平提供基本信息的有力工具,可以 对界面的电子结构进行定量预测,已成功应用于一些 纳米铝热剂的计算研究,例如 Shimojo 等[11-13]采用从 头算分子动力学(AIMD)方法研究了Al/Fe₂O₃的电子 结构性质,发现1ps内在界面处发生氧化还原反应。 Lanthony 等^[14]采用密度泛函方法(DFT)研究了CuO 沉积在 AI(111)表面以及 AI 沉积在 CuO(11-1)表面 的初始过程,探讨了Al/CuO界面的生长机制。唐翠 明等[15]采用 AIMD 研究了 2000 K下 Al/Fe₂O₃的铝热 反应,结果表明反应过程中化学键和电荷量随时间的 增加而变化。Xiong等^[16]采用DFT方法研究了不同金 属与CuO(111)构成的界面,分析了不同铝热界面的 电子性质和稳定性。Feng等^[17]采用 AIMD 模拟了 AI/NiO纳米铝热剂点火和燃烧反应过程,发现一次放 热和二次放热分别是由界面反应和块体反应引起。但 是,目前尚未有关于Al/Fe,O,界面性质的理论研究。

本研究采用周期性 DFT 方法研究了 AI(111)/ Fe₂O₃(104)和AI(111)/Fe₂O₃(110)铝热剂界面的黏 附特性和电子结构,其中AI(111)和Fe₂O₃的(104)和

引用本文:薛闯,高贫,王桂香,等. Al/Fe₂O₃纳米铝热剂界面结构和稳定性的周期性密度泛函理论研究[J]. 含能材料,2022,30(3):197-203. XUE Chuang, GAO Pin, WANG Gui-xiang, et al. Interface Structure and Stability of Al/Fe₂O₃ Nano-thermite: A Periodic DFT Study[J]. *Chinese Journal of Energetic Materials*(*Hanneng Cailiao*),2022,30(3):197-203.

CHINESE JOURNAL OF ENERGETIC MATERIALS

(110)表面是X射线衍射实验中的主要暴露晶面^[9],也是 目前研究较多的晶面^[18-19]。通过计算分析Fe₂O₃(104) 和Fe₂O₃(110)的表面结构和表面能的大小,搭建了 5种Al/Fe₂O₃界面模型,研究了Al/Fe₂O₃铝热剂体系的 界面结构、黏附功和电子结构。该工作可为Al/Fe₂O₃ 纳米铝热剂的材料设计、性能优化以及工程应用提供 理论支持与指导。

2 计算方法

计算采用周期性 DFT 方法^[20-21] 和 VASP 程序 包^[22-24] 完成。采用广义梯度近似(GGA)下的 Perdew-Burke-Ernzerhof(PBE)^[25]方法处理电子与电 子之间的交换关联势,采用投影缀加波方法(PAW)^[26] 描述离子与电子之间的相互作用,价电子在平面波中 展开,平面波截断能设为450 eV,并对能量做收敛测 试以保证结果准确可靠。由于 α -Fe₂O₃是一个强关联 反铁磁体系,包含局域的*d*轨道电子,因此采用了 DFT+U的修正方法,U值选取根据文献报道对Fe取 4 eV^[27]。Brillouin 区数值积分采用 Monkhorst-Pack 取样方案^[28],对 α -Fe₂O₃块体倒易空间网格点取5×5×5, Fe₂O₃(104)表面和Al(111)/Fe₂O₃(104)界面取3×5×1。 为避免界面层之间周期性作用的影响,表面设置厚 12 Å的真空层。电子自洽迭代能和弛豫过程原子上的力的收敛标准分别为10⁻⁴ eV和0.03 eV·Å⁻¹。所有计算均考虑自旋极化效应。基于以上参数设置,对 α -Fe₂O₃和Al晶体进行了测试,优化得到的晶胞常数 (Fe₂O₃为 *a*=*b*=5.061 Å, *c*=13.835 Å; Al 为 *a*=*b*=*c*= 4.041 Å)与实验值(Fe₂O₃, *a*=*b*=5.038 Å, *c*=13.772 Å; Al, *a*=*b*=*c*=4.05 Å)^[29-30]以及文献报道的理论计算结 果 (Fe₂O₃, *a*=*b*=5.066 Å, *c*=13.868 Å; Al, *a*=*b*=*c*= 4.04 Å)^[31,18]相近,表明所用计算方法和参数是可 靠的。

3 结果与讨论

3.1 表面结构

在研究界面结构前先讨论构成界面的表面结构。 Fe₂O₃(104)表面有两种不同类型的结构:一种是表层 只有O原子暴露(记为FS1,见图1),另一种是表层有 Fe和O两种原子暴露,且亚表层也是Fe和O(FS2),或 亚表层只有O(FS3)。Fe₂O₃(110)表面也有两种不同 类型的结构:表层只有O原子暴露且亚表层为Fe (FS4)或亚表层为O(FS5),以及表层只有Fe原子暴露 (FS6)。因此,共构建了7种上下对称的表面结构,即 Al(111)和FS1~FS6,其中FS3和FS4表面符合化学计 量比,FS1、FS2、FS5和FS6表面不符合化学计量比。

图1 Al和Fe₂O₃的表面结构

Fig.1 Surface structures of Al and Fe_2O_3

为保证计算结果可靠,须测试每个表面模型的厚度。通过计算不同原子层数的表面模型的表面能 (γ),可以对表面γ模型进行收敛性测试,也就是确定 合适的表面模型的厚度,使表面模型足以表现块体性 质。γ由公式(1)计算^[32-33]:

$$\gamma = \frac{1}{2A} \Big[G^{\text{slab}} - \sum N_i \mu_i \Big]$$
⁽¹⁾

式中, G^{slab} 是表面模型的吉布斯自由能^[30],J·mol⁻¹; N_i

是与表面模型同样大小的块体中*i*原子的数量,无量 纲; μ_i 是*i*原子的化学势,J·mol⁻¹;由于模型有两个对称 表面,故表面积为2A,m²·mol⁻¹。在平衡条件下,块体 的化学势 μ^{bulk} 等于块体的摩尔吉布斯自由能 G_m^{bulk} ,即 单位块体中每种组分的化学势之和,因此对于Al (111)和Fe₂O₃表面分别有式(2)和(3):

$$G_{\rm m,Al}^{\rm bulk} = \mu_{\rm Al} \tag{2}$$

$$G_{m, Fe_2O_3}^{bulk} = 2\mu_{Fe} + 3\mu_O$$
(3)

根据吉布斯自由能的定义^[30]: G = E + pV - TS(式中 *E*是内能, J·mol⁻¹; *p*是大气压, Pa; *V*是体积, m³; *T*是温度, K; *S*是熵, J·mol⁻¹·K⁻¹), 由于 *pV*和 *TS*项对固 体材料的 *G*贡献很小, 因此 *G*近似等于能量 *E*。故对 于 Al (111) 和 Fe₂O₃ 表面, (1) 式可分别化为(4) 和(5)式:

$$\gamma = \frac{1}{2A} \left[E_{AI}^{\text{slab}} - N_{AI} E_{AI}^{\text{bulk}} \right]$$
(4)

$$\gamma = \frac{1}{2A} \left[E_{\text{Fe}_2\text{O}_3}^{\text{slab}} - \frac{1}{2} N_{\text{Fe}} E_{\text{Fe}_2\text{O}_3}^{\text{bulk}} - \left(N_{\text{O}} - \frac{3}{2} N_{\text{Fe}} \right) \mu_{\text{O}} \right] \quad (5)$$

式中, E_{Al}^{slab} 和 $E_{Fe_2O_3}^{slab}$ 分别是 Al 和 Fe_2O_3 表面模型的总能量, E_{Al}^{bulk} 和 $E_{Fe_2O_3}^{bulk}$ 分别是块体中每个 Al 原子和每个 Fe_2O_3 单元的能量, J·mol⁻¹。O原子的化学势 μ_0 可由 (6)式得到:

$$\mu_{\rm O}(T,p) = \frac{1}{2} E_{\rm O_2}^{\rm gas} + \Delta \mu_{\rm O}(T,p)$$
(6)

式中, $E_{O_2}^{gas}$ 是 O_2 分子的能量。常温常压下 $\Delta \mu_0 = -0.27 \text{ eV}^{[32]}$ 。

对于AI(111)表面,由公式(4)计算得到的结果表 明,当原子层厚度 n≥5 时,γ趋于固定值 0.83 J·m⁻²,与 文献报道的结果一致^[34]。因此,本研究采用层数为5 的AI(111)表面模型。对于Fe₂O₃(104)和Fe₂O₃(110) 表面,由公式(5)计算得到不同 n下 FS1~FS6 的 y 值列 于表1。显然,对于表面FS1~FS6,当原子层数分别达 到7、8、6、6、7、8时,y已基本趋于某个定值,表明在此 厚度下这些表面模型已能较好表现体相性质,综合考 虑计算精度和成本,对FS1~FS6表面的厚度分别选取 了 n=10、11、9、9、10、11。另外,从表1还可以发现, 对这6种不同的Fe,O₃表面,其γ的大小次序为:FS4< FS1<FS2<FS3<FS6<FS5。在Fe₂O₃(110)的3种暴露 面中FS4的γ最小,稳定性最好,与之前文献报道的结 果一致^[35],而FS5和FS6的 γ 比其它表面大得多,这主 要是因为FS5和FS6表面的悬空键较多,表面稳定性 较差。Fe₂O₂(104)的3种暴露面的 γ 与FS1差距不大, 稳定性较好,这也与之前的报道相近[36]。因此,本研 究后续计算只考虑较稳定的 FS1~FS4 表面,其中前 3种为(104)表面,FS4为(110)表面。

3.2 Al/Fe₂O₃界面

3.2.1 界面几何结构

在对 AI和 Fe₂O₃表面模型的厚度及稳定性的测试 结果基础上,构建了 AI(111)/Fe₂O₃界面结构模型。 构建界面模型时,对两个表面均引入了一定的晶格畸 变。对于 AI(111)/Fe₂O₃(104)界面,在 AI 块体上沿

CHINESE JOURNAL OF ENERGETIC MATERIALS

含能材料

表1 不同层数的 Fe₂O₃(104)和 Fe₂O₃(110)表面模型的表面 能

Table 1 Surface energies of Fe_2O_3 (104) and Fe_2O_3 (110) surfaces with different number of layers

surface	п	$N_{\rm Fe}$	N _o	γ / J·m ⁻²
	7	8	14	1.58
FS1	10	12	20	1.58
	13	16	26	1.58
	16	20	32	1.58
	8	12	16	1.83
EC 2	11	16	22	1.82
F32	14	20	28	1.82
	17	24	34	1.82
	6	8	12	1.94
EC 2	9	12	18	1.92
F33	12	16	24	1.92
	15	20	30	1.92
	6	8	12	1.47
FC 4	9	12	18	1.41
Г34	12	16	24	1.41
	15	20	30	1.41
	7	12	12	4.52
	10	16	18	4.52
F33	13	20	24	4.51
	16	24	30	4.54
	8	8	18	3.48
F6 <i>6</i>	11	12	24	3.44
г 30	14	16	30	3.44
	17	20	36	3.44

Note: *n* is the surface thickness, N_{Fe} is the number of Fe atoms, N_{O} is the number of O atoms, and γ is the surface energy.

[111]方向截取(3×3)的二维Al(111)平板(晶格常数 $\mu=\nu=8.59$ Å)堆积在Fe₂O₃(104)(晶格常数 $\mu=\nu=9.0$ Å) 上构建界面模型,构建的界面模型的晶格常数($\mu=\nu=8.80$ Å)与Al(111)和Fe₂O₃(104)晶格常数的相对误 差 $\Delta\mu$ 和 $\Delta\nu$ 均小于2.34%。同样,对于Al(111)/Fe₂O₃ (110)界面,截取(3×2)的Al(111)平板(晶格常数 $\mu=8.59$ Å, $\nu=5.73$ Å)堆积在Fe₂O₃(110)(晶格常数 $\mu=8.77$ Å, $\nu=5.46$ Å)上构建界面模型,构建的界面模 型的晶格常数($\mu=8.68$ Å, $\nu=5.59$ Å)与Al(111)和 Fe₂O₃(110)晶格常数的相对误差 $\Delta\mu$ 和 $\Delta\nu$ 也都小于 2.39%。由于Fe₂O₃(104)和Fe₂O₃(110)表面有不同 暴露结构且Al(111)表面的Al原子在Fe₂O₃表面还有 不同的堆积位置,由FS1~FS4与Al(111)表面依次构 建了5种可能的界面结构模型,分别为AFS1、AFS2、 AFS3、AFS4和AFS5(见图2)。其中,AFS4和AFS5均 由 FS4 表面与 Al(111)表面构成,分别对应于 Al 原子 堆积在 FS4 表面的两种不同位置,即 O 原子空位和 O 原子顶位。在界面结构模型的弛豫过程中,由于距 离接触界面远的原子位置变化很小,因此,对距接触界 面最远的 Fe₂O₃表面的 4 层和 Al(111)表面的 2 层进行 了固定。

图2 5种Al/Fe₂O₃界面结构

Fig.2 Five interface structures of Al/Fe₂O₃

图 3 是弛豫后的界面结构。弛豫前后界面处 Al 原子位置发生了较大变化,在垂直于和平行于界面方 向都有移动,界面间距减小。在 AFS2 和 AFS3 界面中, Al 原子的紧密堆叠导致 Fe₂O₃表面重构, Fe₂O₃表面 O原子垂直于界面向 Al 表面移动,形成了与 AFS1 中 相似的 O 原子暴露界面结构,说明 AFS1 比 AFS2 和 AFS3 界面更稳定。在 AFS4 界面中,界面处 Al 原子在 弛豫过程也发生了移动,从 O 原子空位移动到 O 原子 顶位,形成了与 AFS5 相似的界面结构,说明 O 原子顶 位堆叠的 AFS5 界面比 AFS4 界面更稳定。

图3 5种Al/Fe₂O₃界面的弛豫结构

Fig.3 Five relaxed interface structures of Al/Fe_2O_3

3.2.2 界面黏附功

黏附功(W_{ad})是将一个界面分离为两个自由表面

Chinese Journal of Energetic Materials, Vol.30, No.3, 2022 (197-203)

薛闯,高贫,王桂香,贡雪东

所需的单位面积可逆功,因此可用来评价界面的结合 强度和稳定性。W_{ad}越大,界面原子间的结合力越强, 界面越稳定。W_{ad}由式(7)求得^[37]:

$$W_{\rm ad} = \frac{E_{\rm AI} + E_{\rm Fe_2O_3} - E_{\rm intf}}{A}$$
(7)

式中, E_{Al} 和 $E_{Fe_2O_3}$ 分别是界面中 Al 和 Fe_2O_3 表面的总能量, E_{intf} 是 Al/ Fe_2O_3 界面的能量, J·mol⁻¹; A 是界面面积, m²·mol⁻¹。

表 2 列出了 AI(111)/Fe₂O₃(104)和 AI(111)/ Fe₂O₃(110)界面 AFS1~AFS5 的 W_{ad}。从表中可以看 出, AI (111)/Fe₂O₃ (104) 界面的黏附功明显大于 Al(111)/Fe₂O₃(110),说明Al(111)/Fe₂O₃(104)界面 比 AI(111)/Fe₂O₃(110)界面更稳定。与其他体系相 比^[16],金属层与Fe₂O₂的相互作用更强,黏附功更大, 也预示着界面存在较强的离子特性。对于 AI(111)/ Fe₂O₃(104)界面,三种界面结构模型的黏附功分别为 3.92、3.27和3.43 J·m⁻²。AFS1界面的黏附功最高,说 明O原子暴露的Fe₂O₃(104)表面与AI原子的结合强 度更高,界面结构更稳定。AFS2和AFS3界面的黏附 功小于AFS1,结合强度低于AFS1,界面结构稳定性相 对较差。对于 AI(111)/Fe₂O₃(110)界面, O 原子顶位 堆积的AFS5界面黏附功为3.02 J·m⁻²,略高于空位堆 积的AFS4界面的黏附功(2.98 J·m⁻²),说明顶位堆叠 的AFS5界面结合强度更高更稳定。Wad的结果与弛 豫过程结构的变化规律吻合。

表2 5种界面的黏附功(W_{ad})

Table 2 Adhesion work	(W_{ad})) of five AI/Fe_2O_3	interfaces
-------------------------------	------------	------------------------	------------

system	interface	$W_{\rm ad}$ / J·m ⁻²
	AFS1	3.92
AI(111)/Fe ₂ O ₃ (104)	AFS2	3.27
	AFS3	3.43
$AI(111)/\Gamma_{2} = O(110)$	AFS4	2.98
$AI(111)/Fe_2O_3(110)$	AFS5	3.02

Note: W_{ad} is the adhesion work.

3.2.3 界面电子结构

为了揭示界面的电子结构和键合特征与界面稳定 性的关系,由公式(8)计算了Al(111)/Fe₂O₃(104)和 Al(111)/Fe₂O₃(110)界面中*W*_{ad}最大的AFS1和AFS5 的差分电荷密度,还采用平面平均法计算了垂直于界 面(即z轴)方向的平均差分电荷密度(见图4,图中黄 色和蓝色分别表示电荷密度的增加和减少)。

$$\Delta \rho = \rho_{\text{intf}} - \rho_{\text{AI}} - \rho_{\text{Fe}_{2}\text{O}_{3}} \tag{8}$$

式中, ρ_{int} 、 ρ_{Al} 和 $\rho_{Fe_2O_3}$ 分别是 Al/Fe₂O₃界面、Al表面和 Fe₂O₃表面的电荷密度,e·Å⁻³。由图 4a 和图 4b 可见, 在 AFS1 界面中,Fe₂O₃(104)表面O原子与Al(111)表 面 Al原子之间有大量电荷聚集,Al原子失去部分电荷 而O原子得到部分电荷,Al和O原子之间有较强的静 电作用,在界面处形成Al-O离子键,因此AFS1界面主 要是通过 Al—O离子键作用形成。根据图 4c 和图 4d,对于 AFS5 界面,界面处也存在很多自由电子,主 要来源于 Fe₂O₃(110)表面的 O原子和 Al(111)表面 的 Al原子,说明该界面处同样存在较强的静电作用, 形成了 Al—O离子键,因此 AFS5 界面也主要是通过 Al—O离子键作用形成。比较 AFS1 和 AFS5 界面的价 电荷相互作用和电荷聚集程度,前者明显强于后者,这 与前者的黏附功更大的结果相吻合。

图4 AFS1界面(a, b)和AFS5界面(c, d)的差分电荷密度和 平面平均差分电荷密度(黄色和蓝色分别表示电荷密度的增加 和减少)

Fig.4 Differential charge density and plane-averaged difference charge density of AFS1 (a, b) and AFS5 (c, d) (Yellow and blue colors represent the increase and decrease in charge density, respectively)

为更深入了解界面的电子结构,还计算了AFS1和AFS5界面的分波态密度(PDOS)(见图5),图5给出了 界面处O和AI以及远离界面的内层O和AI原子的 PDOS,内层O和AI原子视作为体相原子,可以看出, 界面处原子的PDOS与内层原子不同,说明界面处发 生了电荷重新分布。在AFS1界面上,O原子的p轨 道在-6 eV处出现了新的峰,且峰值与AI原子的峰值 相近,主要是O-2p和AI-3s之间的杂化,说明AI (111)/Fe₂O₃(104)界面中形成了AI—O离子键。与 体相原子相比,界面处AI原子在费米能级处的占据态 较低,进一步说明了界面上形成了AI—O离子键。在 AFS5界面上,O原子也在-6 eV出现新的峰,且峰值也与 AI(111)表层 AI 原子相近,说明 AI(111)/Fe₂O₃(110) 界面处也有 AI—O离子键形成。同时,与体相 AI 原子 相比,表层 AI 原子的 PDOS 曲线更平缓,特别是费米 能级处的占据态更低,进一步说明界面处有 AI—O 离 子键形成。

图 5 Al/Fe₂O₃界面的分波态密度图:(a)AFS1界面;(b)AFS5 界面

Al(Bulk)、O(Bulk)、Al(Interface)、O(Interface)分别表示内层 (体相)及界面 Al和O原子

Fig.5 The partial density of states of Al/Fe_2O_3 interfaces: (a) AFS1 interface; (b) AFS5 interface. Al(Bulk), O(Bulk), Al (Interface), and O(Interface) represent the inner Al and O atoms and interface Al and O atoms, respectively.

4 结论

采用周期性密度泛函理论方法研究了 Fe₂O₃(104) 和 Fe₂O₃(110)表面以及 Al/Fe₂O₃界面的性质,分析了 不同表面和界面的结构、表面能和界面黏附功。结果 表明:

(1)O原子暴露的Fe₂O₃(104)表面比其它Fe₂O₃(104) 表面更稳定,同样地,O原子暴露且亚表层为Fe原子 的Fe₂O₃(110)表面比其它Fe₂O₃(110)表面更稳定。

(2)在5种Al/Fe₂O₃界面中,由O原子暴露表面形成的Al(111)/Fe₂O₃(104)界面AFS1和Al(111)/Fe₂O₃(110)界面AFS5具有较大的界面黏附功,黏附功分别为3.92 J·m⁻²和3.02 J·m⁻²,界面较稳定。

(3)在这两种界面结构中,电荷转移主要发生在 界面处的AI和O原子层之间。界面处有Al-O离子 键形成,且轨道电子的杂交来源于Al-3s轨道和O-2p 轨道。

参考文献:

[1] Wang L L, Munir Z A, Maximov Y M. Thermite reactions:

their utilization in the synthesis and processing of materials[J]. *Journal of Materials Science*, 1993, 28(14): 3693–3708.

[2] 严新炎, 孙国雄, 张树格. SHS技术的发展及应用[J]. 机械工程 材料, 1995, 19(5): 1-5.

YAN Xin-yan, SUN Guo-xiong, ZHANG Shu-ge.Developments and application of SHS processes[J]. *Materials for Mechanical Engineering*, 1995, 19(5):1–5.

- [3] Zhu H X, Abbaschian R. In-situ processing of NiAl-alumina composites by thermite reaction[J]. *Materials Science & Engineering A*, 2000, 282(1-2): 1-7.
- [4] 安亭,赵凤起,肖立柏.高反应活性纳米含能材料的研究进展[J].火炸药学报,2010,33(3):55-62.
 AN Ting, ZHAO Feng-qi, XIAO Li-bai. Progress of study on high activity nano-energetic materials[J]. *Chinese Journal of Explosives & Propellants*, 2010, 33(3):55-62.
- [5] Yan S, Jian G, Zachariah M R. Electrospun nanofiber-based thermite textiles and their reactive properties [J]. *ACS Applied Materials & Interfaces*, 2012, 4(12): 6432–6435.
- [6] 王军,张文超,沈瑞琪,等.纳米铝热剂的研究进展[J].火炸药 学报,2014,37(4):1-8.
 WANG Jun, ZHANG Wen-chao, SHEN Rui-qi, et al. Research progress of nano thermite[J]. *Chinese Journal of Explosive & Propellants*, 2014, 37(4):1-8.
- [7] Cheng J L, Hng H H, Lee Y W, et al. Kinetic study of thermaland impact-initiated reactions in Al-Fe₂O₃ nanothermite [J]. *Combustion and Flame*, 2010, 157(12): 2241–2249.
- [8] Dadbakhsh S, Hao L. In situ formation of particle reinforced Al matrix composite by selective laser melting of Al/Fe₂O₃ powder mixture [J]. Advanced Engineering Materials, 2012, 14(1-2): 45-48.
- [9] Zhang W C, Yin B Q, Shen R Q, et al. Significantly enhanced energy output from 3D ordered macroporous structured Fe₂O₃/ Al nanothermite film[J]. ACS Applied Materials & Interfaces, 2013, 5(2): 239–242.
- [10] 郑国强,张文超,徐兴,等.模板法制备多孔核/壳结构的Fe₂O₃/ Al纳米铝热薄膜[J]. 无机材料学报,2015,30(6):610-614.
 ZHENG Guo-qiang, ZHANG Wen-chao, XU Xing, et al. Prepartion of porous core/hell structure Fe₂O₃/Al nanothermite membrane by template method[J]. *Journal of Inorganic Materials*, 2015, 30(6): 610-614.
- [11] Shimojo F, Nakano A, Kalia R K, et al. Electronic processes in fast thermite chemical reactions: A first-principles molecular dynamics study[J]. *Physical Review E*, 2008, 77(6): 066103.
- [12] Shimojo F, Kalia R K, Nakano A, et al. Metascalable molecular dynamics simulation of nano-mechano-chemistry[J]. *Journal of Physics-Condensed Matter*, 2008, 20(29): 294204–294209.
- [13] Shimojo F, Nakano A, Kalia R K, et al. Enhanced reactivity of nanoenergetic materials: A first-principles molecular dynamics study based on divide-and-conquer density functional theory[J]. Applied Physics Letters, 2009, 95(4): 043114.
- [14] Lanthony C, Ducere J-M, Esteve A, et al. Formation of Al/ CuO bilayer films: Basic mechanisms through density functional theory calculations [J]. *Thin Solid Films*, 2012, 520 (14): 4768-4771.
- [15] 唐翠明,赵锋,陈晓旭,等. Al与α-Fe₂O₃纳米界面铝热反应的从头计算分子动力学研究[J].物理学报,2013,62(24): 269-275.

TANG Cui-ming, ZHAO Feng, CHEN Xiao-xu, et al. Ther-

Chinese Journal of Energetic Materials, Vol.30, No.3, 2022 (197–203)

mite reaction of Al and α -Fe₂O₃ at the nanometer interface: ab initio molecular dynamics study [J]. *Acta Physica Sinica*, 2013, 62(24); 269–275.

- [16] Xiong G L, Yang C H, Zhu W H, et al. Density functional theory study of high-energy metal (Al, Mg, Ti, and Zr)/CuO composites[J]. RSC Advances, 2016, 6(93): 90206–90211.
- Feng S H, Xiong G L, Zhu W H. Ab initio molecular dynamics studies on the ignition and combustion mechanisms, twice exothermic characteristics, and mass transport properties of Al/ NiO nanothermite[J]. *Journal of Materials Science*, 2021, 56 (19): 11364–11376.
- [18] Xie C Y, Sun Y L, Zhu B Z, et al. Insight into the dissociation mechanism of ethanol molecule over the nano-aluminum surface: A density functional theory study[J]. *Journal of Materials Science*, 2021, 56(30): 17096–17111.
- [19] Wanaguru P, An J, Zhang Q M. DFT+U study of ultrathin α -Fe₂O₃ nanoribbons from (110) and (104) surfaces[J]. *Journal of Applied Physics*, 2016, 119(8): 084302.
- [20] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. *Physical Review*, 1964, 136(3B): 864–871.
- [21] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. *Physical Review A*, 1965, 140(4): 1133–1138.
- [22] Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals[J]. *Physical Review B*, 1993, 48 (17): 13115-13118.
- [23] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
- [24] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. *Physical Rview B*, 1996, 54(16): 11169–11186.
- [25] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. *Physical Review Letters*, 1996, 77(18): 3865-3868.
- [26] Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
- [27] Latorre C A, Ewen J P, Gattinoni C, et al. Simulating surfactant iron oxide interfaces: from density functional theory to molecular dynamics [J]. *Journal of Physical Chemistry B*, 2019, 123(31): 6870–6881.
- [28] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. *Physical Review B*, 1976, 13(12): 5188-5192.
- [29] Finger L W, Hazen R M. Crystal structure and isothermal compression of Fe_2O_3 , Cr_2O_3 , and V_2O_3 to 50 kbars[J]. *Journal of Applied Physics*, 1980, 51(10): 5362–5367.
- [30] Haynes W M. CRC Handbook of Chemistry and Physics, 97th Edition[M]. *Taylor and Francis: 2016*.
- [31] Mahmoud A, Deleuze P-M, Dupont C. The nature of the Pt $(111)/\alpha$ -Fe₂O₃ (0001) interfaces revealed by DFT calculations [J]. *Journal of Chemical Physics*, 2018, 148 (20) : 204701.
- [32] Reuter K, Scheffler M. Composition, structure, and stability of RuO₂(110) as a function of oxygen pressure [J]. *Physical Review B*, 2001, 65(3): 321–325.
- [33] Manh-Thuong N, Seriani N, Gebauer R. Defective α -Fe₂O₃(0001): An ab Initio Study[J]. *Chemphyschem*, 2014, 15(14): 2930–

2935.

- [34] Liu L M, Wang S Q, Ye H Q. First-principles study of polar Al/ TiN (111) interfaces [J]. *Acta Materialia*, 2004, 52 (12) : 3681–3688.
- [35] Li F F, Shi C M, Cui G L, et al. Theoretical insight into CO-sensing performance of pure and oxygen-defective α-Fe₂O₃ (110) surface[J]. *Computational and Theoretical Chemistry*, 2018, 1123: 41-49.
- [36] Zhang J J, Qin W, Dong C Q, et al. Density functional theory study of elemental mercury adsorption on Fe₂O₃[104] and its effect on carbon deposit during chemical looping combustion[J]. *Energy & Fuels*, 2016, 30(4): 3414–3418.
- [37] Sun T, Wu X, Li W, et al. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study[J].*Physica Scripta*,2015,90(3):035701.

Interface Structure and Stability of Al/Fe₂O₃ Nano-thermite: A Periodic DFT Study

XUE Chuang¹, GAO Pin², WANG Gui-xiang¹, GONG Xue-dong¹

(1. School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2. National Quality Supervision and Insepection Center for Industrial Explosive Materials, Nanjing 210094, China)

Abstract: Nano-thermites, as one kind of energetic composites, have wide applications. A systematic study on the relationship between the interface structures and properties has great significance for the preparation of the new nano-thermites with excellent performance. The structures and energies of $Fe_2O_3(104)$ and $Fe_2O_3(110)$ surfaces and the structures, bonding properties, and adhesion work of Al(111)/Fe_2O_3(104) and Al(111)/Fe_2O_3(110) interfaces (AFS1, AFS2, AFS3, AFS4 and AFS5) were studied with the periodic density functional theory in this work. Results show that O-terminated $Fe_2O_3(104)$ and $Fe_2O_3(110)$ surfaces and the interfaces formed by these surfaces with Al(111) are more stable than those of the (104) and (110) surfaces of Fe_2O_3 respectively. Among 5 of the Al/Fe_2O_3 interfaces, the interfaces composed by the O-terminated $Fe_2O_3(104)$ and $Fe_2O_3(110)$ surfaces es with Al(111), i.e., AFS1 and AFS5, have the maximum adhesion work (3.92 J·m⁻² and 3.02 J·m⁻², respectively), and AFS1 is more stable than AFS5. In these two most stable interfaces, the Al atoms stack on the top position of the O atoms of the Fe_2O_3 surfaces and the binding of Al and Fe_2O_3 surfaces is mainly through the Al-O ionic bonds.

Key words: periodic density functional theory; nano-thermite; Al/Fe2O3; interface structure; interface stabilityCLC number: TJ55Document code: ADOI: 10.11943/CJEM2021224

(责编:姜梅)