文章编号:1006-9941(2010)04-0393-04

RDX 溶液固液平衡数据测定及模型研究

朱 勇,葛忠学,王伯周,李普瑞 (西安近代化学研究所,陕西西安710065)

aterials.org.cn 此略综m 摘 要:采用激光动态跟踪技术分别测定 RDX 在环己酮、二甲亚砜、γ-丁内酯、N-甲基吡咯烷酮、N, N-二甲基甲酰胺溶液中的固 液平衡数据,并采用λh方程、NRTL方程、Apelblat方程对实验数据进行关联,结果表明 Apelblat 模型关联度最高,模拟相对误差在 0.1%~2.18%之间。最后,针对特定体系的溶解度曲线,进行多项式筛选及参数拟合,模拟相对误差在1%以内。

关键词:物理化学; RDX; 溶解度; 固液平衡 中图分类号: TJ55: O64

文献标识码:A

DOI: 10.3969/j.issn.1006-9941.2010.04.008

引 言 1

溶液热力学是开展诸多化学过程研究的基础,而 溶液中的固液平衡测定则为溶液热力学研究提供必需 的数据,固液平衡数据的准确性直接影响分离、结晶以 及提纯等化工过程的设计计算。在固液平衡模型研究 领域, Buchowski^[1]提出的 λh 方程、Prausnita^[2]改进 的 NRTL 方程及 Apelblat 方程^[3]最具代表性。

引入激光动态跟踪技术运用激光透射原理,借助 光学仪器,能够准确捕捉溶液中固体溶解平衡点,是固 液平衡数据测定领域的先进技术,该方法及其装置的 稳定性、数据可靠性都已被行业所接受^[4-5]。

RDX 作为一种经典含能化合物,在应用领域已经 测定了大量的固液平衡实验数据。但是,由于传统目 测法存在误差,相应测定装置稳定性不足,文献值存在。 较大差异^[6-7]。因此,建立先进的方法和装置,精确测 定 RDX 在常用溶剂环己酮、二甲亚砜、γ-丁内酯、N-甲 基吡咯烷酮、二甲基甲酰胺中的溶解度十分必要。同 时,针对含能化合物固液平衡体系开展模型化研究,利 用 Apelblat 方程、λh 方程、NRTL 方程进行数据关联 与参数拟合,考核模型模拟准确度,采用 Levenberg-Marquardt 法对不同固液平衡体系进行数学模型推导 也十分必需。因此,本文基于这些目的进行了相关的 研究。

收稿日期: 2009-12-01;修回日期: 2010-01-14 基金项目:国防科技工业基础产品创新计划火炸药科研专项 作者简介:朱勇(1983-),男,硕士,助理工程师,主要从事含能材料合 成与工艺研究。e-mail: zhu-y@263.net

2 实验部分

2.1 试剂与仪器

RDX,工业化商品,熔点为 203.8 ℃;环己酮、二 甲亚砜、y-丁内酯、N-甲基吡咯烷酮、二甲基甲酰胺均 为市售分析纯试剂。

TLX-B 型氦氖激光器与 ID-1 型功率指示计为西 安赛朴林公司产品,恒温循环器为优莱博公司 lulabo F12 型,带夹套的玻璃溶解釜自制。

2.2 实验装置及过程

实验装置(图1)由带夹套的玻璃溶解釜、激光发 射器、连接有光电转换器的功率指示计组成,通过恒温 循环器控制溶解釜夹套循环水温度,夹套温度精度可 控制在±0.05K,溶解釜中装有磁力搅拌转子,以使

图1 溶解度测定装置

1一激光接收器, 2一功率显示器, 3一磁力搅拌器, 4一搅拌磁 子,5-溶解瓶,6-冷凝管,7-精密温度计,8-恒温循环 器,9-氦氖激光器,10-升降台

Fig. 1 Equipment for solubility measurement

1-laser receiver, 2-power indicator, 3-magnetic stir, 4magneton, 5-SLE cell, 6-condenser, 7-accurate thermometer, 8-thermostatic circulator, 9-He-Ne laser, 10-lift table 固液两相充分混合。为避免较高温度溶剂挥发对实验 结果的影响,溶解釜上连有冷凝管,用以回流溶剂。采 用精密温度计检测体系温度,分辨率为0.05 K。

准确称量一定的 RDX 固体和量取一定的溶剂加 人溶解釜,开启搅拌,开启激光电源使激光束穿过玻璃 釜中央位置,在另一侧使用光电转换器接收并转换为 电信号显示。开启恒温循环器,以0.2 K·min⁻¹的速 度升温,随着固体溶解进入液相、溶液的透明度提高, 透射光强度逐渐增大,功率指示计读数增加,当固体完 全溶解时,透过溶解釜的激光强度达到最大值,此温度 下溶液达到饱和状态,根据溶质及溶剂加入量即可得 到该温度下的溶解度。

3 结果与讨论

3.1 固液平衡机理模型解析

3.1.1 固液平衡理论及模型

Apelblat 方程^[3] 基于 Clausius-Clapeyron 方程, 并假定溶液的焓随温度线性变化,推得:

 λh 方程^[1]专门预测固体溶解度平衡,形式如下:

$$\ln\left[1 + \frac{\lambda(1-x_i)}{x_i}\right] = \lambda h\left(\frac{1}{T} - \frac{1}{T_{mi}}\right)$$
(2)

式中,*x_i*为组分*i*的摩尔分数;*T_{mi}*为纯组分*i*的熔点 温度,K;λ、h为方程参数。

NRTL 方程^[2]是基于固体组分 *i* 在平衡两相中逸 度相等的热力学理论,形式为:

$$\ln r_{i}x_{i} = -\frac{\Delta_{m}H_{i}}{R}(\frac{1}{T} - \frac{1}{T_{mi}})$$
(3)

式中, r_i 为组分*i*在液相中的活度系数; x_i 为组分*i*的 摩尔分数; T_{mi} 为纯组分*i*的熔点温度,K; $\Delta_m H_i$ 为纯 组分*i*熔化焓,kJ·mol⁻¹。

对于二元体系,

$$\ln r_{1} = x_{2}^{2} \left[\tau_{21} \left(\frac{G_{21}}{x_{1} + x_{2} G_{21}} \right)^{2} + \frac{\tau_{12} G_{12}}{\left(x_{2} + x_{1} G_{12} \right)^{2}} \right]$$
(4)

$$\ln r_{2} = x_{1}^{2} \left[\tau_{12} \left(\frac{G_{12}}{x_{2} + x_{1} G_{12}} \right)^{2} + \frac{\tau_{21} G_{21}}{\left(x_{1} + x_{2} G_{21} \right)^{2}} \right]$$
(5)

式中, $\tau_{12} = \frac{g_{12} - g_{22}}{RT}$, $\tau_{21} = \frac{g_{21} - g_{11}}{RT}$, $G_{12} = \exp(-\alpha_{12}\tau_{12})$, $G_{21} = \exp(-\alpha_{21}\tau_{21})$, $g_{12} - g_{22}$, $g_{21} - g_{11}$, $\alpha_{12}(\alpha_{12} = \alpha_{21})$ 为参数。 **3.1.2** 溶解度数据测定值与模型回归值

RDX 在五种溶剂中的溶解度测定值及三种模型 回归值见表1,其中相对误差定义为:

$$R = \frac{X - X_c}{X} \times 100\% \tag{6}$$

式中,x为实验值(溶质摩尔分数),x。为模型计算值。

平均相对误差定义为

$$\varepsilon = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{x_c - x_i}{x_i} \times 100\% \right|$$
(7)

式中,n为实验点数。

Apelblat 方程参数拟合结果及平均相对误差见表 2。由表 2 可知,五种固液平衡体系模拟数据的平均 相对误差为 0.1% ~ 2.18%,表明 Apelblat 方程预测 值与实验值符合良好。

λh方程中的参数拟合结果及平均相对误差见表 3。λh方程针对 RDX/环己酮体系的固液平衡数据预 测值误差较大,这应该是由于 RDX 在环己酮中溶解度 随温度变化率最大,不适合于该研究体系。

NRTL 方程中的参数拟合结果及平均相对误差见表 4。NRTL 方程用于液液均相体系热力学计算时具有相当高的契合度^[2],而在固液两相平衡体系中的模拟准确度则较差,不适合于该研究体系。

3.2 数学模型的筛选及参数拟合

对于固液平衡模型,由多元体系微观热力学规律 演绎的宏观方程尽管有充分的理论依据及强大的普适 性,但过多的假设会影响模型的准确度。因此,由数学 角度考虑数据曲线特征,拟合得到特定体系下的精确 固液平衡方程,对于深入开展研究具有重要意义。

针对若干复杂的多项式函数,采用 Levenberg-Marquardt 法^[8]对表 1 中的实验数据进行回归,筛选 出能够准确反映溶解度曲线特征的数学模型,模型参 数拟合结果如表 5 所示。

模型计算值与实验测定值的比较如图 2 所示,由 图可知特定体系下的数学模型具有极高的准确度,能 够满足对数据精度有较高要求的研究需要。

图 2 数学模型模拟结果评价

Fig.2 Evaluation of the simulation involved with mathematical models

表1 溶解度测定值与模型计算值比较

 Table 1
 Comparison between experimental data and simulated data of solubility

		Apelblat equation		λh equation		NRTL equation		
1/K	X	X _c	<i>R</i> /%	X _c	<i>R</i> /%	x _c	R/%	
cyclohexanone	9					015	1 **	
290.10	0.0607	0.0588	3.13	0.0398	34.43	0.0801	-31.96	
296.15	0.0685	0.0677	1.17	0.0597	12.85	0.0713	-4.09	
309.75	0.0977	0.0916	6.24	0.1066	-9.11	0.0897	8.19	
322.95	0.1229	0.1260	-2.52	0.1558	-26.77	0.1335	-8.63	
337.50	0.1733	0.1762	-1.67	0.2126	-22.68	0.1794	-3.52	
349.70	0.2369	0.2327	1.77	0.2630	-11.02	0.2393	-1.01	
357.85	0.2822	0.2798	0.85	0.2981	-5.63	0.2856	-1.21	
371.25	0.3680	0.3684	-0.11	0.3599	2.20	0.3660	0.54	
dimethylsulfox	ide		0.1	10				
298.55	0.1260	0.1221	3.10	0.1300	-3.18	0.1374	-9.05	
307.10	0.1417	0.1409	0.56	0.1402	1.06	0.1289	9.03	
313.25	0.1521	0.1513	0.53	0.1493	1.84	0.1263	16.96	
326.45	0.1749	0.1758	-0.52	0.1728	1.20	0.1657	5.26	
333.05	0.1884	0.1892	-0.43	0.1864	1.06	0.1909	-1.33	
347.55	0.2189	0.2217	-1.28	0.2195	-0.27	0.2456	-12.20	
353.15	0.2344	0.2354	-0.43	0.2344	0.00	0.2638	-12.54	
370.85	0.2845	0.2868	-0.81	0.2860	-0.53	0.2665	6.33	
γ -butyrolactor	ne							
301.85	0.0528	0.0537	-1.71	0.0533	-0.95	0.0562	-6.44	
309.50	0.0620	0.0626	-0.97	0.0634	-2.26	0.0600	3.23	
317.20	0.0722	0.0728	-0.83	0.0749	-3.74	0.0676	6.37	
332.55	0.0965	0.0972	-0.73	0.1004	-4.04	0.0979	-1.45	
350.45	0.1355	0.1338	1.25	0.1358	-0.22	0.1453	-7.23	
363.30	0.1677	0.1669	0.48	0.1663	0.84	0.1650	1.61	
367.15	0.1787	0.1779	0.45	0.1762	1.40	0.1726	3.41	
376.65	0.2093	0.2080	0.62	0.2027	3.15	0.1811	13.47	
N-methyl-2-py	rrolidonewere							
302.75	0.1563	0.1589	-1.66	0.1613	-3.20	0.1497	4.22	
311.25	0.1699	0.1713	-0.82	0.1686	0.77	0.1556	8.42	
321.05	0.1873	0.1862	0.59	0.1797	4.06	0.1726	7.85	
336.40	0.2120	0.2113	0.33	0.2036	3.96	0.2082	1.79	
344.95	0.2248	0.2261	-0.58	0.2196	2.31	0.2286	-1.69	
351.75	0.2377	0.2384	-0.29	0.2340	1.56	0.2561	-7.74	
360.30	0.2529	0.2543	-0.55	0.2535	-0.24	0.2590	-2.41	
376.15	0.2843	0.2856	-0.46	0.2969	-4.43	0.2659	6.47	
N, N-dimethy	lformamide			.d.				
287.10	0.4861	0.4856	0.01	0.5058	-4.05	0.4808	1.09	
305.70	0.5004	0.5011	-0.14	0.5060	-1.12	0.4729	5.50	
317.25	0.5105	0.5105	0.00	0.5074	0.61	0.5025	1.57	
328.75	0.5190	0.5196	-0.12	0.5105	1.64	0.5140	0.96	
340.25	0.5293	0.5286	0.13	0.5170	2.32	0.5266	0.51	
350.95	0.5346	0.5366	-0.04	0.5269	1.44	0.5371	-0.47	
355.65	0.5413	0.5402	0.20	0.5328	1.57	0.5462	-0.91	
376.50	0.5564	0.5555	0.16	0.5671	-1.92	0.5518	0.83	
		20						

表 2	Apelblat 方	デ程回 り	1参数	及平均柞	目对误差	

Table 2	Correlation parameters of Apelblat equation and their	
average	elative deviations	

New Made		1		
solvent	ATA	В	С	ε / %
cyclohexanone	-90.4133	2156.2899	14.1348	2.18
DMSO	-31.3835	405.2774	4.9071	0.96
γ -butyrolactone	-37.5292	-15.5231	6.0695	0.88
NMP	-16.9381	-16.4246	2.6524	0.66
DMF	-3.1662	-17.4629	0.4425	0.10

表3 λh方程回归参数及平均相对误差

Table 3	Correlation	parameters	of	λh	equation	and	their
average re	elative deviati	ions					

solvent	λ	h	ε / %
cyclohexanone	0.0362	326.5451	15.59
DMSO	-0.1403	576.7929	1.14
γ -butyrolactone	-0.0327	888.5953	2.08
NMP	-0.1871	651.4724	2.57
DMF	-1.0251	311.6233	1.83

395

4 结 论

(1)采用激光跟踪法准确测定 RDX 在环己酮、二 甲亚砜、γ-丁内酯、N-甲基吡咯烷酮、二甲基甲酰胺中 的溶解度数据,其中在 DMF 中的溶解度最大,而在环 己酮中具有斜率最大的溶解度曲线。

(2) 从溶液热力学角度出发,利用 Apelblat 方程、 λh 方程、NRTL 方程进行数据关联与参数拟合,其中, Apelblat 方程模拟相对误差在 0.1% ~2.18% 之间, 准确度最高,λh 方程、NRTL 方程模拟准确度稍低。

(3) 从数学角度出发,筛选适合特定溶解度曲线

的多项式模型,模拟结果平均相对误差均在1%以内。

表4 NRTL 方程回归参数及平均相对误差

 Table 4
 Correlation parameters of NRTL equation and their average relative deviations

	0	ial util					
	solvent	$g_{12} - g_{22}$	g ₂₁ - g ₁₁	α ₁₂	ε / %		
-	cyclohexanone	430234.08	702824.56	0.02	7.39		
	DMSO	328200.61	24.16	0.02	9.09		
	γ -butyrolactone	256755.30	5.51	0.02	5.40		
2	NMP	333585.04	29.96	0.02	5.07		
	DMF	485901.86	244433.19	0.02	1.48		

表5 固液平衡体系数学模型

Table 5 Mathematical models of solid-liquid equilibrium system

solvent	model			parameters		
		p_1	p_2	p_3	ρ_4	ρ_5
cyclohexanone	$x = p_1 + p_2 * T + p_3 * T^2 + p_4 * T^3 + p_5 * T^4$	-110.49	1.35	-0.006	1.23E – 5	-9.16E-9
DMSO	$x = p_1 + p_2 * T + p_3 * T^2 + p_4 * T^3 + p_5 * T^4$	-32.71	0.38	-0.002	3.24E-6	-2.33E-9
γ -butyrolactone	$x = p_1 + p_2 * T^{0.5} + p_3 * T + p_4 * T^{1.5} + p_5 * T^2$	-177.66	52.07	-6.08	0.36	-0.01
NMP	$x = p_1 + p_2 * T + p_3 * T/Ln(T) + p_4 * Ln(T) / T + p_5 * T^{-1.5}$	245.46	1.29	-10.18	-6932.74	184134.52
DMF	$x = p_1 + p_2 * T + p_3 * Ln(T) + p_4 / Ln(T) + p_5 * Ln(T) * T^{-2}$	3231.53	0.13	-291.14	-9289.47	292500.65

参考文献:

- Buchowski H, Ksiazcak A, Pietrzy K S. Solvent activity along saturation line and solubility of hydrogen-bonding solids [J]. J Phys Chem, 1980, 84(9): 975 - 979.
- [2] Prausnita J M, Lichenthaler R N. Molecular Thermodynamics of Fluid-phase Equilibria [M]. Beijing: Chemical Industry Press, 1990: 349 – 352.
- [3] Apelblat A, Manzurola E. Solubilities of o-acetylsalicylic, 3, 5dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from *T* = (278 to 348) K[J]. *J Chem Eng Data*, 1994, 39: 793 – 795.
- [4] Chen M M, Ma P S, Wang L, et al. A novel experimental method solid solubility determination facing with environment issue[J]. Acta Phys Chim Sin, 2004, 20(4): 445 – 448.
- [5] 周彩荣,蒋登高,王斐. 1, 2-环己二醇溶解度的测定及关联[J]. 化工学报,2004,55(9):1412-1416.
 ZHOU Cai-rong, JIANG Deng-gao, WANG Fei. Measurement and correlation of solubilities of 1, 2-cyclohexanediol [J]. *J Chem Ind Eng(China)*,2004,55(9):1412-1416.
- [6] 叶毓鹏,曹欣茂,叶玲,等. 炸药结晶工艺学及其应用[M]. 北京: 兵器工业出版社,1995:114.
- [7] 黄亨建. RDX 的钝化和 B 炸药的改性研究[D]. 绵阳: 中国工程 物理研究院,2002.

HUANG Heng-jian. Studies of desensitization on RDX and modifications on composition B[D]. Mianyang: China Academy of Engineering Physics, 2002.

[8] Yamashita N, Fukushima M. On the rate of convergence of the levenberg-marquardt method[J]. Computing, 2001, 15: 239 – 249.

Measurement of Solid-Liquid Equilibrium and Its Model for RDX Solution

ZHU Yong, GE Zhong-xue, WANG Bo-zhou, LI Pu-rui

(Xi'an Modern Chemistry Research Institute, Xi'an 710065, China)

Abstract: Using a laser monitoring observation technique, the solubility of RDX in cyclohexanone, dimethylsulfoxide, γ -butyrolactone, *N*-methyl-2-pyrrolidone and *N*, *N*-dimethylformamide was determined. The Apelblat equation, λh equation and NRTL equation were used to correlate the solubility data. The results show that the Apelblat equation could best correlate the solid-liquid equilibrium data, the corresponding averge relative deviations are between 0.1% and 2.18%. For the solubility curves, the selection of appropriate polynomial and the parameter fitting were conducted, the relative deviations were less than 1%. **Key words**: physical chemistry; RDX; solubility; solid-liquid equilibrium

CLC number: TJ55; O64 Document code: A

DOI: 10.3969/j.issn.1006-9941.2010.04.008