文章编号: 1006-9941(2008)01-0001-04

GI-920 炸药的热分解动力学研究。 高大元,何松伟, 沈永兴,周建华

摘要: 根据 PETN 和 GI-920 炸药在升温速率分别为 5,10,20 K·min⁻¹的 DSC-TG 曲线,对 PETN 和 GI-920 炸药的 热分解过程进行了研究,用 Ozawa 法和非线性等转化率积分法获得 PETN 和 GI-920 炸药热分解动力学参数和机理函 数。结果表明,PETN 与 GI-920 炸药的热分解机理属随机成核和随后生长。在不同升温速率的 TG 曲线上,GI-920炸 药热失重开始温度大致相同。GI-920 炸药 DSC 曲线呈现一个吸热熔化峰和一个放热分解峰,130 ℃以下有良好的热 稳定性。GI-920 炸药热分解的活化能、指前因子和机理函数分别为 156.02 kJ · mol⁻¹、1.934×10¹⁷ s⁻¹、f(α) = $4/3(1-\alpha) \left[-\ln(1-\alpha) \right]^{\frac{1}{4}}, 热分解动力学方程为: d\alpha/dt = 2.579 \times 10^{17} \times (1-\alpha) \left[-\ln(1-\alpha) \right]^{\frac{1}{4}} \exp(-\frac{1.876 \times 10^4}{\pi})_{\circ}$

关键词:物理化学;GI-920 炸药;DSC-TG 热分析;动力学参数;机理函数 中图分类号: TJ55; TQ560.72; 064 文献标识码・A

1 引 言

PETN 炸药具有起爆感度高、临界直径小的爆轰 特性,主要用于雷管装药、传爆药和导爆索装药。有机 硅橡胶 SD-33 预聚体是含硅的合成高分子材料,具有 良好的耐高温、耐油及耐多种化学药品侵蚀特性。固 化后的有机硅橡胶耐水性、耐油性和化学稳定性比一 般橡胶好,在热固炸药中是重要的粘结剂之一。 GI-920炸药是由 PETN 和 SD-33 粘结剂组成的热固炸 药,具有小直径、大长径比的传爆特性,广泛用于常规 战斗部起爆、传爆系列^[1]。在 GI-920 炸药研制过程 中,用传统的真空安定性试验(VST)、恒温热失重试 验、差热分析(DTA)和差示扫描量热分析(DSC)研究。 其热稳定性以及与炸药、金属和高分子材料的相容性, 但是,至今未见研究 GI-920 炸药热分解动力学机理函 数的相关文献报道。本实验用 DSC-TG 联用热分析技 术研究 PETN 和 GI-920 炸药的热分解规律,获得热分 解动力学参数、机理函数和动力学方程,为深入研究 GI-920 炸药在不同环境作用下的热降解规律,评估热 固炸药加速老化后性能变化奠定基础。

2 实验部分

2.1 试样和仪器

PETN 炸药样品为白色晶体颗粒,直径为40~

收稿日期: 2007-03-20; 修回日期: 2007-05-23

100 µm,熔点 141~142 ℃;有机硅橡胶 SD-33 预聚体 为无色透明粘稠液体,密度为0.98~0.99g·cm⁻³,加 3% 正硅酸乙酯固化剂混合均匀,经温度 70 ℃ 固化 8 h 后制得无色半透明固化 SD-33 粘结剂,密度为 1.10~ 1.20 g·cm⁻³,用刀片切削成粉末实验样品;将 PETN 炸药与 SD-33 粘结剂、固化剂在捏合机中混合成粘绸物 料,经过三辊研磨机压延至物料呈腻子状,在温度70℃ 固化8h后制得白色固化GI-920炸药,密度为1.510~ 1.535 g·cm⁻³,然后用刀片切削成粉末实验样品。

仪器为德国 NETZSCH STA 449C DSC-TG 联用热分 析仪。样品质量为(5.00 ±0.50) mg,实验温度范围为 20~600 ℃, 气氛为氮气, 流动速度为20 mL·min⁻¹。

2.2 DSC-TG 联用热分析

对 PETN 炸药、SD-33 粘结剂和 GI-920 炸药进行 了升温速率分别为 5,10,20 K · min⁻¹的 DSC-TG 联用 分析。PETN 和 GI-920 炸药在升温速率 5 K・min⁻¹的 DSC-TG 谱图分别见图 1、图 2。SD-33 粘结剂、PETN 和 GI-920 炸药在升温速率 5 K · min⁻¹的 TG 曲线见 图 3。升温速率分别为 5,10,20 K · min⁻¹的 PETN 和 GI-920炸药 TG 曲线分别见图 4、图 5。

从图 1 可知,在 TG 曲线上,PETN 炸药热失重开 始温度为135.82 ℃,结束温度为242.05 ℃,热失重率 为 93. 45%。同时,在 DSC 曲线上, PETN 炸药先吸热 熔化,然后分解放热。从134.42 ℃开始吸热,峰温为 140.56 ℃,结束温度为148.17 ℃;然后从161.40 ℃ 开始放热,峰温为197.51 ℃,结束温度为242.05 ℃。

从图 2 可知,在 TG 曲线上,GI-920 炸药热失重开

作者简介:高大元(1962-),男,副研究员,博士,从事含能材料的热分 析、爆轰和安全性能研究。

始温度为135.82 ℃,结束温度为249.45 ℃,热失重率为 73.93%。同时,在DSC曲线上,GI-920炸药先吸热熔化, 然后分解放热。从135.82 ℃开始吸热,峰温为141.86 ℃, 结束温度为 153.10 ℃,吸热量为 - 103.6 J · g⁻¹; 然后从 163.45 ℃开始放热,峰温为189.83 ℃,结束温度为 207.52 ℃,放热量为 505.8 J·g⁻¹。

由图 3 可知, PETN 与 GI-920 炸药的 TG 曲线趋势 基本一致,热分解机理属于同一类型。只是由于 GI-920炸药含 20% 的 SD-33 粘结剂,热分解深度小于 0.8,在此温度范围的热失重主要是 GI-920 炸药中的 PETN 炸药。PETN 和 GI-920 炸药在 130 ℃以下均具 有良好的热稳定性。

从图 4 可知,升温速率分别为 5,10,20 K·min⁻¹的 PETN 炸药 TG 曲线趋势一致,热失重开始温度均为 135.82 ℃,结束温度分别为 242.05 ℃、269.70 ℃和 285.49 ℃,热失重率分别为93.45%、95.80%和97.77%。

从图 5 可知,升温速率分别为 5,10,20 K · min⁻¹的

图 1 PETN 炸药在升温速率 5 K·min⁻¹的 DSC-TG 曲线 Fig. 1 DSC-TG curves of PETN explosive at a heating rate of 5 K \cdot min⁻¹

GI-920 炸药 TG 曲线趋势一致,热失重开始温度均为 135.82 ℃,结束温度分别为 249.45 ℃、303.83 ℃和 327.65 ℃, 热失重率分别为 73.93%、 76.73% 和 78.70%。

3 热分解动力学研究

对于炸药的热分解,用非等温法进行动力学研究 时,常用的 Ozawa 公式为^[2-3]:

$$\lg \beta = \lg \left[\frac{AE}{RF(\alpha)} \right] - 2.315 - 0.4567 \frac{E}{RT} \quad (1)$$

式中, β 为升温速率,K·min⁻¹; α 为炸药反应深度; $F(\alpha)$ 为机理函数的积分形式; A 为指前因子, s⁻¹; E 为反应活化能, J·min⁻¹; R 为理想气体常数, J·min⁻¹·K⁻¹; T 为温度, K。如果选择相同的 α , lg β与 1/T 呈线性关系,由直线斜率计算活化能,并用 来求解热分解机理函数。由式(1)变换可得:

$$\lg F(\alpha) = \lg \left[\frac{AE}{R\beta}\right] - 2.315 - 0.4567 \frac{E}{RT} \quad (2)$$

图 2 GI-920 炸药在升温速率 5 K · min⁻¹的 DSC-TG 曲线 Fig. 2 DSC-TG curves of GI-920 explosive at a heating rate of 5 K \cdot min $^{-1}$

式(2)中,对任何热分解机理函数, $\lg F(\alpha)$ 和1/T呈 线性关系。对某个假设的反应机理函数,若通过回归方 法求得的分解活化能与式(1)求得的活化能接近,且线 性相关系数好,即获得热分解的反应机理函数^[4]。

在升温速率分别为 5,10,20 K · min⁻¹的 PETN 炸 药热失重曲线上,分别求取反应深度 α = 0.1,0.2,0.3, 0.4,0.5,0.6,0.7,0.8,0.9 时对应的反应温度 T,再对假 设的炸药热分解反应机理函数的相应 $\lg F(\alpha) = 1/T$ 进 行线性回归分析。计算结果表明,对于 PETN 炸药的热 分解, $\lg F(\alpha) = \lg \left[-\ln(1 - \alpha) \right]^{\frac{2}{3}} = 1/T$ 回归所得的分 解活化能与式(1)求得的活化能最接近。同时,在升温

速率分别为β=5,10,20 K·min⁻¹的GI-920 炸药热失 重曲线上,分别求取反应深度 $\alpha = 0.1, 0.2, 0.3, 0.4,$ 0.5,0.6 时对应的反应温度 T,再对假设的炸药热分解反 应机理函数的相应 $\lg F(\alpha)$ 与 1/T 进行线性回归分析。结 果表明,对于 GI-920 炸药的热分解, $\lg F(\alpha) =$ $\lg[-\ln(1-\alpha)]^{3/4}$ 与 1/T 回归所得的分解活化能与用式 (1)求得的活化能最接近。计算结果分别见表1~4。

线性回归分析结果表明,PETN 炸药的热分解属于 n=2/3的成核和核生长机理,反应机理函数的微分形

式 为:
$$f(\alpha) = \frac{1}{F'(\alpha)} = \frac{3}{2}(1-\alpha) [-\ln(1-\alpha)]^{\frac{1}{4}}$$

故 PETN 炸药的热分解动力学方程为:

$$\frac{d\alpha}{dt} = kf(\alpha) = Ae^{\frac{-E}{RT}}f(\alpha) = 6.410 \times 10^{15} \times (1 - \alpha) \left[-\ln(1 - \alpha) \right]^{\frac{1}{3}} \exp(-\frac{1.713 \times 10^4}{T}) (3)$$

GI-920 炸药的热分解属于 n = 3/4 的成核和核生 长机理,反应机理函数的微分形式为 $f(\alpha)$ = $-\frac{4}{3}(1-\alpha)[-\ln(1-\alpha)]^{\frac{1}{4}}$,故 GI-920 炸药的热分 解动力学方程为:

$$\frac{d\alpha}{dt} = kf(\alpha) = Ae^{\frac{-E}{RT}}f(\alpha) = 2.579 \times 10^{17} \times (1 - \alpha) \left[-\ln(1 - \alpha) \right]^{\frac{1}{4}} \exp(-\frac{1.876 \times 10^4}{T}) (4)$$

表 1 PETN 炸药的热分解活化能计算数据

Table 1	Calculated data of t	hermal decomposition	activation energy	of PETN explosive

	T/K		0	$E/kJ \cdot min^{-1}$	
α	$\beta = 5 \text{ K} \cdot \text{min}^{-1}$	$\beta = 10 \text{ K} \cdot \text{min}^{-1}$	$\beta = 20 \text{ K} \cdot \text{min}^{-1}$	Ozawa's method	NL-INT ¹⁾
0.1	445.26	453.28	461.67	137.30	137.02
0.2	450.56	459.07	468.08	131.93	131.29
0.3	454.76	463.27 5	471.29	142.00	141.81
0.4	456.98	465.98	473.88	140.12	139.80
0.5	459.57	467.59	476.59	140.98	140.65
0.6	462.28	470.18	478.69	147.78	147.76
0.7	463.27	472.89	481.41	134.46	133.75
0.8	466.48	474.99	483.01	149.28	149.28
0.9	471.78	480.79	488.32	152.08	152.14
mean	all'			141.77	141.50

Note: 1) The value of E obtained by the integral isoconversional non-linear (NL-INT) method^[5].

表 2	GI-920	炸药的热	分解活	化能计	算数据
-----	--------	------	-----	-----	-----

Table 2 Calculated data of thermal decomposition activation energy of GI-920 explosive								
N'a XX	$\theta = 5 K + \min^{-1}$	$\frac{17 \text{ K}}{\rho = 10 \text{ K} \cdot \text{min}^{-1}}$	$R = 20 K + \min^{-1}$	$E/kJ \cdot n$	NI INT ¹			
0.12	<u>p = 5 K • mm</u>	<u>p = 10 K * mm</u> 454 19	<u>p = 20 K • mm</u> 460.07	168 30	160 50			
0.1	453.41	460.07	468.12	157.81	158.46			
0.3	456.82	463.47	471.36	162.06	162.86			
0.4	460.07	466.72	473.38	179.30	180.97			
0.5	460.84	468.73	476.16	156.87	157.35			
0.6	464.09	472.76	478.02	170.70	171.88			
mean				165.84	166.85			

Note: 1) The value of E obtained by NL-INT method.

PETN explosive							
ρ		Eq. (1)					
μ	:	-1	_	Ε	Α	E	
/ K • mm	intercept	slope	r	$/kJ \cdot min^{-1}$	$/ {\rm s}^{-1}$	$/kJ \cdot min^{-1}$	
5	16.7842	- 7762	0.9986	141.30	3.697×10^{15}		
10	16.6516	- 7845	0.9990	142.81	5.391×10^{15}	141.77	
20	17.1258	- 8212	0.9972	143.09	3.732×10^{15}		
mean				142.40	4.273×10^{15}		

表 4 GI-920 炸药的 $\lg F(\alpha)$ 对 1/T 线性拟合结果 Table 4 Linear fitting results of $\lg F(\alpha)$ vs 1/T for GI-920 explosive

0		Eq. (2)				
β /K·min ⁻	¹ intercept	slope	r	E /kI · min ⁻¹	A /s ⁻¹	E
5	18.5052	- 8602	0.9951	156.60	1.755×10^{17}	
10	17.7363	- 8383	0.9951	152.61	6.131×10^{16}	165.84
20	18.2011	- 8726	0.9926	158.85	3.435×10^{17}	
mean				156.02	1.934×10^{17}	

4 结 论

(1) PETN 与 GI-920 炸药的 TG 曲线趋势基本一 致,热分解机理属于同一类型。只是由于 GI-920 炸药 含 20% 的 SD-33 粘结剂,热分解深度小于 0.8,在此温 度范围的热失重主要是 GI-920 中的 PETN 炸药。PETN 和 GI-920 炸药在 130 ℃以下均具有良好的热稳定性。

(2) PETN 炸药的热分解属于 n = 2/3 的成核和核 生长机理,活化能为 142.40 kJ · mol⁻¹,指前因子为 4.273 × 10¹⁵ s⁻¹,反应机理函数的微分形式为 $f(\alpha) =$ $\frac{1}{F'(\alpha)} = \frac{3}{2}(1-\alpha)[-\ln(1-\alpha)]^{\frac{1}{3}}$,热分解动力学方 程为: dα/dt = 6.410 × 10¹⁵ × (1 - α) $\left[-\ln(1 - \alpha) \right]^{\frac{1}{4}}$ exp($-\frac{1.713 \times 10^4}{T}$)。 (3) GI-920 炸药的热分解属于 n = 3/4 的成核和 核生长机理,活化能为 156.02 kJ · mol⁻¹,指前因子为 1.934 × 10¹⁷ s⁻¹,反应机理函数的微分形式为 f(α) = $\frac{1}{F'(\alpha)} = \frac{4}{3}(1 - \alpha)[-\ln(1 - \alpha)]^{\frac{1}{4}}$,热分解动力学方 程为: dα/dt = 2.579 × 10¹⁷ × (1 - α) $[-\ln(1 - \alpha)]^{\frac{1}{4}}$ exp($-\frac{1.876 \times 10^4}{T}$)。

参考文献:

- [1] 董海山,周芬芬. 高能炸药及其相关物性能[M]. 北京:科学出版 社,1989.
- [2] 胡荣祖,史启祯. 热分析动力学[M]. 北京:科学出版社,2001.
- [3] Ozawa T. A new method of analyzing thermogravimetric data [J].
 Bulletin of Chemical Society of Japan, 1965, 38(11): 1881 1886.
- [4] 高大元,董海山,李波涛. 炸药热分解动力学研究及其应用[J]. 含能材料(增刊),2004. 307-310.
 GAO Da-yuan,DONG Hai-shan,LI Bo-tao. Research and application of thermal decomposition kinetics for explosives[J]. *Chinese Journal* of Energetic Materials(Supplement),2004. 307-310.
- [5] 胡荣祖,赵凤起,高红旭,等.非线性等转化率的微、积分法及其在 含能材料物理化学研究中的应用一I.理论和数值方法[J].含 能材料,2007,15(2):1-4.

HU Rong-zu, ZHAO Feng-qi, GAO Hong-xu, et al. Differential and integral isoconversional non-linear methods and their application in physical chemistry study of energetic materials — I : Theory and method [J]. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2007, 15(2); 1-4.

Thermal Decomposition Kinetics of GI-920 Explosive

GAO Da-yuan, HE Song-wei, SHEN Yong-xing, ZHOU Jian-hua

(Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: The thermal decomposition processes of PETN and GI-920 explosives were studied by DSC-TG at heating rates of 5,10 and 20 K \cdot min⁻¹, respectively. The thermal decomposition kinetic parameters and the mechanism function of PETN and GI-920 explosives were obtained by Ozawa's method and the integral isoconversional non-linear method. The results show that the thermal decomposition mechanism of PETN and GI-920 explosives is classified as random nucleation and growth. The initial temperatures of the thermal decomposition of GI-920 explosive are approximately the same on TG curves with the different heating rates. DSC curve of the GI-920 explosive reveals an endothermic melting peak and an exothermic decomposition peak. The GI-920 explosive have good thermal stability below 130 °C. The activation energy, pre-exponential factor and mechanism function of the thermal decomposition process of GI-920 explosive are 156.02 kJ \cdot mol⁻¹, 1.934 $\times 10^{17}$ s⁻¹ and $f(\alpha) = 4/3(1 - \alpha) [-\ln(1 - \alpha)]^{\frac{1}{4}}$, respectively. The thermal decomposition kinetic equation is $d\alpha/dt = 2.579 \times 10^{17} \times (1 - \alpha) [-\ln(1 - \alpha)]^{\frac{1}{4}} \exp(-\frac{1.876 \times 10^4}{r})$.

Key words: physical chemistry; GI-920 explosive; DSC-TG thermal analysis; kinetic parameter; mechanism function