Vol. 13, No. 3 June, 2005

文章编号:1006-9941(2005)03-0166-03

1,2,4-三唑-5-酮结构和性质的理论研究 马海霞^{1,2},肖鹤鸣¹,宋纪索²胡芭胡² 杂世题³ (1. 南京理工大学化工学院, 江苏南京 210094; 2. 西北大学化工学院/陕西省物理无机化学重点实验室,陕西西安710069; 3. 西北大学现代物理所,陕西西安710069)

摘要: 对两种 1,2,4-三唑-5-酮的酮式互变异构体 1,2,4-三氢-1,2,4-三唑-5-酮(I)和 2,3,4-三氢-1,2,4-三唑-5-酮(Ⅱ)进行了 HF/6-31G**水平、B3LYP/6-31G**水平的几何构型全优化以及 MP2/6-31G**//B3LYP/6-31G** 水平的总能量计算,提供了两种互变异构体的几何构型参数、电子结构、原子所带净电荷和振动光谱,并对化合物 的稳定性进行了比较,证明1,2,4-三氢-1,2,4-三唑-5-酮为稳定构型,与实验结果相符。

关键词:物理化学;1,2,4-三唑-5-酮;稳定性;从头算;密度泛函 中图分类号: TJ55; 0626 文献标识码:A

1 引 言

三唑类化合物由于其在农药、医药、含能材料方面 的应用而受到人们的关注^[1~3]。1,2,4-三唑-5-酮 (TO)作为三唑环类化合物,含氮量高达65%,由于氮 原子的结构特点,使得 TO 在键长、键角、键能等方面 的性能优于纯氮或少氮杂环化合物。由于双键位置的 不同,存在两种互变异构体(也是同分异构体)(见图 1),1,2,4-三氢-1,2,4-三唑-5-酮和2,3,4-三氢-1,2,4-三唑-5-酮。本文用量子化学方法在理论上确定 TO 的 稳定构型为1,2,4-三氢-1,2,4-三唑-5-酮,与实验事实 相符。

- 图 1 TO 的分子结构和原子编号
- Fig. 1 The molecular structures and atom numbering of TO

计算方法和结果 2

应用 Gaussian 98 程序包^[4]中的 HF 和 B3LYP 方 法,选取 6-31G**基组,以半经验分子轨道 AM1 优化 几何作为初始构型,对图1所示的两种结构进行全优

作者简介:马海霞(1974-),女,博士后,从事含能材料的合成和性质研 究。e-mail: changma@ sohu. com

化和 SCF 计算。振动分析表明所得的优化几何均对 应势能面上的能量极小点(无虚振动频率)。为求得 较精确的分子总能量我们还作了 MP2 电子相关校正 计算。计算中所有收敛精度均取程序限定的缺省值, 全部计算均在 Legend P4 微机上完成。

3 讨论

3.1 分子几何

表1给出标题物的部分优化几何参数。表2列出 部分原子间的重叠布居数。由表1参照图1可见,标 题物 Ⅰ 和 Ⅱ 几何构型的 HF 和 B3LYP 优化结果基本 一致。通过与实验值相比较, I 构型的 HF(键长最大 偏差 0.0047 nm,键角最大偏差 2.9°) 和 B3LYP(键长 最大偏差 0.0049 nm,键角最大偏差 3.6°)结果均与实 验值很接近,说明两种方法所得的计算结果均真实可 信。以 B3LYP 结果为例, I 构型五员环键长的平均值 为 0.1368 nm, II 构型五员环键长的平均值为 0.1385 nm,前者键长值与后者键长值相差不大。 I 构型的所 有成环原子及氢原子(氢原子的参数表中未列出)基 本处于一个平面,最大偏差为0.04°。Ⅱ构型的成环 原子对平面的偏差远大于 I 构型,这是因为 I 构型更 容易形成三唑环的大 π 共轭体系,从而使得环键平均 化的同时,也使得键角趋于平均化及环趋于平面化,有 利于提高分子的相对稳定性,降低其感度,因而 I 构型 比Ⅱ构型更容易稳定地存在。从表2也可以看出,除 C=N 双键外, I 构型成环原子的集居数趋于平均化 程度高于Ⅱ构型,说明前者键长平均化程度亦高于后 者,因此Ⅰ构型比Ⅱ构型稳定。

收稿日期:2004-11-22;修回日期:2004-12-28

			angles (°) of	the t	wo i	some	rs			
Table	1	Bond	lengths	(nm)	, bon	d an	gles	(°)	and	diheo	lral
表 1	两利	中异构	体原子问	目的键	ṫ长(n	m),	键角	(°)	及二	面角	(°)

	8	. ,			
		Ι		I	I
	HF	B3LYP	experiment ^[5]	HF	B3LYP
r ₁₋₂	0.1266	0.1299	0.1291	0.1370	0.1379
r ₁₋₅	0.1369	0.1374	0.1361	0.1266	0.1291
r ₂₋₃	0.1368	0.1378	0.1375	0.1399	0.1411
r ₃₋₄	0.1357	0.1383	0.1346	0.1401	0.1428
r ₄₋₅	0.1379	0.1404	0.1355	0.1404	0.1418
r ₄₋₆	0.1197	0.1218	0.1238	0.1184	0.1209
A ₂₋₁₋₅	112.0	112.1	111.1	115.8	115.6
A ₁₋₂₋₃	104.4	103.8	104.8	103.1	103.6
A ₂₋₃₋₄	113.5	114.4	111.5	106.4	106.3
A ₃₋₄₋₅	101.7	100.7	104.4	107.4	107.2
A ₃₋₄₋₆	129.8	130.2	126.9	124.5	124.3
A ₅₋₄₋₆	128.5	129.0	128.7	128.0	128.5
A_{1-5-4}	108.3	108.9	108.1	105.5	105.5
$D_{5-1-2-3}$	-0.0174	-0.0293		10.108	10.9187
D ₂₋₁₋₅₋₄	0.0404	0.052		-2.7002	-3.3406
D ₁₋₂₋₃₋₄	-0.0124	-0.0038		- 12.8922	- 13. 4513
D ₂₋₃₋₄₋₅	0.035	0.0328		12.0389	12.1802
D ₃₋₄₋₅₋₁	-0.0431	-0.0482		-6.0031	-5.7003
D ₆₋₄₋₅₋₁	179.8991	179.9632		173.4238	174.2108
D ₂₋₃₋₄₋₆	- 179. 9061	- 179.978	8	- 167.4129	- 167.7356

Note: *r*-bond length(nm), A-bond angle(°), D-dihedral angle(°).

表 2 两种异构体原子间的重叠集居数

 Table 2
 Population analysis for the two isomers

		I		Ш
population	HF	B3LYP	HF	B3LYP
<i>p</i> ₁₋₂	0.600347	0.525712	0.301313	0.291283
P ₁₋₅	0.293719	0.318386	0.542397	0.495481
P ₂₋₃	0.220605	0.231291	0.167346	0.186435
P ₃₋₄	0.292153	0.229501	0.269052	0.211571
P ₄₋₆	0.672640	0.644090	0.659433	0.627969
P ₄₋₅	0.294919	0.254233	0.380302	0.330185
			ma	

3.2 原子电荷

各原子上净电荷列于表 3。对表 3 中的数据分析 可知,不同方法下计算所得 TO 两种同分异构体的净 电荷分布有所不同,对同一构型 HF 计算的结果高于 B3LYP 的结果。组成 C==O 基的 C 原子 C4 由于 O 原 子 O6 的强吸电效应带有较多的正电荷。对 I 构型和 II 构型,均表现为 N5,O6 和 N3 带有较多的负电荷,形 成配合物时,则 N5,O6 和 N3 优先配位。对于 I 构型 已有实验结果^[6]表明 N3 为配位原子。

表 3 原子净电荷 Table 3 Atomic charges of the title compounds

		Ι	П			
atom	HF	B3LYP	HF	B3LYP		
C1	0.368012	0.308854	0.382496	0.300415		
N2	-0.297280	-0.279883	-0.458535	-0.355937		
N3	-0.538516	-0.401753	-0.503939	-0.399862		
C4	0.973807	0.742837	0.872628	0.660596		
N5	-0.751686	-0.565233	-0.571962	-0.450615		
06	-0.629370	-0.521204	-0.575049	-0.484054		
H7	0.193435	0.139825	0.195776	0.141709		
H8	0.341824	0.291624	0.326380	0.293134		
Н9	0.339774	0.284932	0.332205	0.294614		

3.3 分子总能量、前沿轨道组成、能级及其差值

表4列出它们的分子总能量、前线轨道能级及其 差值。从表4可见,对同一化合物而言,B3LYP方法 计算的分子总能量最低。比较两种标题物的分子总能 量,发现 HF, MP2 和 B3LYP 均给出相同的大小排序 II > I,表明他们的热力学稳定性为 I > II。从表4 的 HF 和 B3LYP 结果还可见, I 构型的 E_{LUMO} 高于 II 构 型,前沿轨道能隙(ΔE)最大,表明 I 构型的化学稳定 性优于 II 构型。这些结果均与至今只有 I 构型合成出 来的事实相符。

表 4	分子总能量、前沿轨道能量及其差值(Hartree)	

Table 4	Molecular	total	energies, frontier	orbital	energy	levels	and	its ga	p (ir	n Hartree	2
---------	-----------	-------	--------------------	---------	--------	--------	-----	--------	-------	-----------	---

	E _{total}		E _{HO}	омо	EL	UMO	Δ	E
	MP2 HF	B3LYP	HF	B3LYP	HF	B3LYP	HF	B3LYP
Ι	- 315.6907354 - 315.6951518	- 317. 4952943	-0.34961	-0.22971	0.18108	0.01211	0.53069	0.24182
Π	-315.4834064 -315.671287	- 317.4699671	-0.38289	-0.24960	0.12352	-0.03504	0.50641	0.21456

note: $\Delta E = E_{\text{LUMO}} - E_{\text{HOMO}}$.

3.4 振动谱

表 5 列出振动光谱频率和强度,其中括号内为振动强度。

由表 5 可见,对于化合物 I,羰基 C==O 在 1704 cm⁻¹ 处有明显的特征吸收峰,计算值为 1789 cm⁻¹(HF)和 1790 cm⁻¹(B3LYP),经理论分析,此处的吸收峰确实 是由 C4 和 O6 的振动引起的。 C==N 双键的对称伸缩 振动频率在 1560 cm⁻¹1 左右,C--N 单键的对称伸缩 振动频率在 1278 cm⁻¹左右,与实验结果(1568 cm⁻¹, 和 1258 cm⁻¹)相符。对于化合物 II,在 1791 cm⁻¹处

有强烈的吸收峰,经分析是 C=O 沿 X 轴振动所致。

表 5 校正后的两种同分异构体的振动频率(cm⁻¹) 和强度(km・mol⁻¹)

Table 5	Scaled vibration frequencies and intensities (cm ⁻¹)
	for the two isomers (km \cdot mol $^{-1}$)

	1			Ш
HF	B3LYP	experiment ^[6]	HF	B3LYP
207(22)	211(13)		235(0.2)	242(0.2)
401(9)	405(6)		468(39)	482(15)
471(13)	458(9)		508(7)	511(22)
487(295)	487(232)		541(91)	520(99)
631(15)	638(8)		686(296)	634(281)
722(10)	710(9)	713	752(101)	737(44)
759(40)	712(7)		800(96)	756(50)
888(8)	794(17)		878(25)	868(17)
902(37)	891(32)		926(45)	892(37)
977(25)	961(17)		959(24)	904(9)
1027(46)	1022(23)		1044(0.8)	1028(4)
1077(0.6)	1076(2)		1125(17)	1096(32)
1206(28)	1172(30)		1211(82)	1163(66)
1313(25)	1278(18)	1258	1322(68)	1280(21)
1374(0.5)	1332(4)		1353(37)	1304(18)
1388(50)	1370(39)		1412(53)	1381(36)
1641(59)	1560(33)	1568	1618(257)	1567(144)
1789(860)	1790(591)	1704	1825(662)	1792(438)
3070(1)	3150(0.8)	3091	3028(6)	3097(4)
3503(131)	3548(91)		3382(50)	3402(29)
3520(120)	3556(80)		3422(62)	3445(40)

4 结 论

本文通过 HF/6-31G**和 B3LYP/6-31**G 方法, 对1,2,4-三唑-5-酮的两种酮式互变异构体进行的理 论研究,从分子总能量、前线轨道能级和组成的结果表明,对于 TO 化合物的两种互变异构体构型, I 构型比 II 构型稳定,为实验提供了理论根据。通过对化合物 的原子电荷分布,确定当 I 构型作为配体时 N5,06 和 N3 为优先配位原子; 所计算振动光谱与实验值有良 好的一致性,经理论分析,振动情况与实验值吻合。

参考文献:

[1] 高骏侠,译. 冀人,校. 唑类内吸性杀菌剂的合成方法[J]. 农药 译从,1988,10(3):19.

GAO Jun-xia, translation. JI Ren, correction. Preparation method on systemic pesticide of azoles heterocyclic compounds [J]. Translated Correction of Pesticide, 1988, 10(3): 19.

[2] 李加荣. 唑类含能化合物的特征[J]. 火炸药学报,1998,21(1): 56-57.

LI Jia-rong. Properties of azoles energetic compounds[J]. *Huozhayao* Xuebao, 1998, 21(1): 56-57.

- [3] MA Hai-xia, SONG Ji-rong, XU Kang-zhen, et al. The thermal decomposition mechanism and the theoretical calculation of [Mg(H₂O)₆]
 (NTO)₂ · 2H₂O[J]. Hanneng Cailiao, 2004, 12(3): 158 160, 164.
- [4] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 98, Revision A. 7[M]. Gaussian, Inc., Pittsburgh PA, 1998.
- [5] 张建国,张同来,陆政,等. [Ag(TO)₂]ClO₄ · H₂O 的制备和晶体 结构[J]. 化学学报,1999,57(11):123-128.
 ZHANG Jian-guo,ZHANG Tong-lai,LU Zheng, et al. Preparation and crystal structure of [Ag(TO)₂]ClO₄ · H₂O[J]. Acta Chimica Sinica,1999,57(11):123-128.
- [6] 张建国. 唑类杂环化合物及其配合物研究[D]. 北京理工大学硕 士学位论文,1999. 58.

ZHANG Jian-guo. The azotic heterocyclic compound and its coordination compounds [D]. Beijing Institute of Technology Dissertation, Dissertation for the Master Degree, 1999. 58.

Theoretical Study on the Structure and Properties of 1,2,4-triazol-5-one

MA Hai-xia^{1,2}, XIAO He-ming¹, SONG Ji-rong², HU Rong-zu², WEN Zhen-yi³

(1. Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China;

2. Department of Chemical Engineering/ Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, China;

 $3.\ Modern\ Physics\ Institute\ ,\ Northwest\ University\ ,\ Xi'an\ 710069\ ,\ China\)$

Abstract; Two isomers of 1,2,4-triazol-5-one: 1,2,4-trihydro-1,2,4-triazol-5-one (I) and 2,3,4-trihydro-1,2,4-triazol-5-one (I) were fully optimized by HF/6-31G^{**} and B3LYP/6-31G^{**}. The total energy calculation was also performed by MP2/6-31G^{**}//B3LYP/6-31G^{**}. The geometry, electron structure, net charges of atoms and vibration spectroscopic properties were calculated. The stabilities of the two compounds were analyzed and compound I was more stable than II which is consistent with the experimental results.

Key words: physical chemistry; 1,2,4-triazol-5-one; stability; ab initio; density function